Меню Рубрики

Решение задач с серповидно клеточной анемией

1. Много ли генов в одной хромосоме?

В одной хромосоме сосредоточено большое число генов.

2. Сколько хромосом в ядре клетки человека?

Геном человека состоит из 23 пар хромосом (в сумме 46 хромосом).

Выполните практическую работу.

Решение задач на наследование признаков при неполном доминировании

1. Проанализируйте представленную в учебнике схему наследования признаков при неполном доминировании.

Все гомозиготные растения имеют или красные (АА), или белые (аа) цветки, тогда как для гетерозиготных характерна розовая окраска венчиков. Если скрещивать экземпляры с красными и с белыми цветками, в первом поколении все гибриды имеют розовые цветки. Так проявляется промежуточный характер наследования. При дальнейшем скрещивании гибридов с розовыми венчиками цветков наблюдается совпадение расщепления по генотипу и фенотипу в виду того, что гетерозигота (Аа) отличается от гомозиготы (АА). В данном случае с ночной красавицей расщепление во втором поколении по цвету венчиков такое – 1 красная (АА) : 2 розовые (Аа) : 1 белая (аа).

2. Решите задачи на наследование признаков при неполном доминировании.

1. У человека серповидноклеточная анемия наследуется как неполностью доминантный признак: у рецессивных гомозигот развивается сильная анемия, которая обычно заканчивается смертельным исходом, а у гетерозигот анемия проявляется в лёгкой форме. Малярийный плазмодий не может усваивать аномальный гемоглобин, в связи с этим люди, имеющие ген серповидно-клеточной анемии, не болеют малярией. В семье у обоих супругов лёгкая форма анемии. 1) Сколько типов гамет продуцирует каждый супруг? 2) Сколько разных фенотипов может быть среди детей этой пары? 3) Какова вероятность рождения в семье ребёнка с тяжёлой формой анемии (в %)? 4) Какова вероятность рождения ребёнка, устойчивого к малярии (в %)? 5) Какова вероятность рождения в семье ребёнка, неустойчивого к малярии (в %)?

1. Запишем объект исследования и обозначение генов.

1) Каждый супруг продуцирует по два типа гамет (А и а).

2) Среди детей этой пары может быть три фенотипа: тяжелая форма анемии, легкая, здоровый.

3) Вероятность рождения в семье ребёнка с тяжёлой формой анемии равна 25%.

4) Вероятность рождения ребёнка, устойчивого к малярии равна 75% (больные анемией как в тяжелой форме (АА), так и в легкой (Аа)).

5) Вероятность рождения в семье ребёнка, неустойчивого к малярии 25% (это здоровый ребенок (аа)).

2. От скрещивания сортов земляники с красными и белыми ягодами получились гибриды с розовыми ягодами, а во втором поколении (F2) оказалось примерно 1000 растений с белыми ягодами, 2000 — с розовыми и 1000 — с красными. 1) Сколько типов гамет образует гибрид F1? 2) Сколько разных генотипов среди гибридов F2 с розовыми ягодами? 3) Сколько разных фенотипов получится от возвратного скрещивания гибрида F1 с белоплодным сортом? 4) Сколько разных генотипов получится от скрещивания гибрида с F1 белоплодным сортом? 5) Сколько разных фенотипов получится от скрещивания гибрида F1 с красноплодным сортом?

1. Запишем объект исследования и обозначение генов.

От скрещивания гибрида F1 с красноплодным сортом получается два разных генотипа (АА, Аа).

1. Какое расщепление по фенотипу происходит во втором поколении при неполном доминировании?

При неполном доминировании во втором поколении происходит расщепление по фенотипу в соотношении 1:2:1.

2. Что такое фенотип?

Фенотип – это совокупность всех внешних и внутренних признаков и свойств организма.

3. Всегда ли по фенотипу можно определить генотип?

По фенотипу не всегда можно понять, какие гены содержит данная особь. Например, у растения гороха, имеющего жёлтые семена, генотип может быть и АА, и Аа. А вот рецессивный признак проявляется только у гомозиготных растений с генотипом аа. Иными словами, мы всегда знаем, каков генотип у особи с рецессивным признаком.

По фенотипу не всегда можно понять, т.к. фенотипические признаки, определяемые теми или иными генами, в различных условиях существования развиваются по-разному.

4. Исходно зная генотип, можно ли предсказать фенотип?

Фенотип зависит не только от генотипа но и от внешних факторов. Можно частично предсказать фенотип, если заранее знать, какие признаки являются доминантными, а какие рецессивными.

5. Зная фенотип, можно ли угадать генотип?

Зная фенотип, можно угадать генотип, т.к. мы можем знать возможные варианты генотипа. Например, горох будет иметь желтый цвет только в состоянии доминантной гомозиготы (АА) или гетерозиготы (Аа).

источник

Решение задач с использованием знаний основ молекулярной биологии

Начальный участок цепи А инсулина представлен следующими пятью аминокислотами:

Глицин-изолейцин-валин-глутамин (глн или глу NН2)-глутамин (глн или глу NН2)

Определите участок ДНК, кодирующей эту часть цепи инсулина.

Решение. Устанавливаем строение и-РНК, являющейся матрицей для синтеза цепи А инсулина. По таблице генетического кода находим стуктуру триплетов для глицина, изолейцина и т.д.

Таблица генетического кода дана как рабочий материал у студентов вместе с текстом задач.

1. Находим структуру триплета для глицина (ГГУ), зате для изолейцина (ААУ), валина (ГУУ), глутамина (ЦАА), глутамина (ЦАА).

2. Подобрав кодирующие триплеты, составляем и-РНК для данного полипептида.

3. По цепочке и-РНК можно восстановить участок нити ДНК, с которой она транскрибировалась.

но ДНК состоит из 2-х нитей. Зная строение одной нити, по принципу комплементарности достраиваем вторую. Целиком участок ДНК, кодирующий часть цепи А инсулина, будет иметь следующее строение:

Участок молекулы ДНК, кодирующий часть полипептида, имеет следующее строение: АЦЦ АТТ ГАЦ ЦАТ ГАА .

Определите последовательность аминокислот в полипептиде.

Строим и-РНК по условию задачи:

По таблице кода последовательно находим для каждого триплета соответствующую аминокислоту и строим участок искомого полипептида.

триптофан — нонсенс — лейцин — валин — лейцин — этого полипептида не будет, так как на нонсенс триплете транскрипция прекратится.

При синдроме Фанкони (нарушение образования костной ткани) у больного с мочой выделяются аминокислоты, которым соответствуют следующие триплеты и-РНК:

УЦУ УГУ ГЦУ ГГУ ЦАГ ЦГУ ААА

Определите, выделение каких аминокислот с мочой характерно длясиндрома Фанкони.

Серин — цистеин — аланин — глицин — глутамин — аргинин — лизин.

У человека, больного цистинурией (содержание в моче больного большего, чем в норме, числа аминокислот), с мочой выделяются аминокислоты, которым соответствуют следующие триплеты и-РНК:

УЦУ УГУ ГЦУ ГГУ ЦАГ ЦГУ ААА.

У здорового человека в моче обнаруживается аланин, серин, глутамин и глицин.

а) Выделение каких аминокислот с мочой характерно для больных цистинурией?

б) Напишите триплеты, соответствующие аминокислотам, имеющимся в моче здорового человека.

Решение. а) пользуясь кодовой таблицей, узнаем состав выделяющихся аминокислот у больного: серин, цистеин, аланин, глицин, глутамин (глу NH2), аргинин, лизин.

Аминокислоты, выделяющиеся у здорового человека, в задаче указаны. Исключаем их из списка, полученного нами, узнаем ответ на поставленный вопрос:

Данные аминокислоты выделяются с мочой только больных цистинурией.

Четвертый пептид в нормальном гемоглобине (гемоглобин А) состоит из следующих аминокислот: валин — гистидин — лейцин — треонин — пролин — глутаминовая кислота — глутаминовая кислота — лизин.

а) У больного с симптомом спленомегалии (собирательный термин, обозначающий преимущественно хроническое увеличение селезенки) при умеренной анемии обнаружили следующий состав четвертого пептида: валин — лейцин — треонин — пролин — лизин — глутаминовая кислота — лизин. Определите изменения, произошедшие в ДНК, кодирующем четвертый пептид гемоглобина, после мутации.

б) У больного серповидноклеточной анемией состав аминокислот четвертого пептида гемоглобина следующий: валин — гистидин — лейцин — треонин — пролин — валин — глутаминовая кислота — лизин. Определите изменения в участке ДНК, кодирующем четвертый пептид гемоглобина, приведшие к заболеванию.

Решение. а) Так как у больного спленомегалией четвертый пептид укоротился на 1 аминокислоту (гистидин) и первая глутаминовая кислота (глу) заменена на лизин, то следовательно, действие мутагенного фактора привело к потере второго триплета — ГТА (и-РНК — ЦАУ), а в шестом триплете произошла мутация — замена оснований — транзиция.

Глутаминовая кислота — и-РНК — ГАА

б) У больного серповидноклеточной анемией в шестом триплете произошла генная мутация: две трансверсии.

Глутаминовая кислота (глу) — валин

Начальный участок цепи В инсулина представлен следующими 10 аминокислотами: фенилаланин — валин — аспарагиновая кислота — глутамин (глу NH2 или глн) — гистидин — лейцин — цистеин — глицин — серин — гистидин.

Определите количественные соотношения аденин + тимин и гуанин + цитозин в цепи ДНК, кодирующей этот участок инсулина.

По известному аминокислотнрму составу строим и-РНК:

УУУ ГУУ ГАУ ГАА ЦАУ УУА УГУ ГГУ УЦУ ЦАУ

Затем строим сначала одну нить, а потом вторую нить ДНК:

ААА ЦАА ЦТА ЦТА ГТА ААТ АЦА ЦЦА АГА ГТА

ТТТ ГТТ ГАТ ГАА ЦАТ ТТА ТГТ ГГТ ТЦТ ЦАТ

Подсчитываем все количество адениновых оснований (21), тиминовых (21), гуаниновых (9), цитозиновых (9). Затем высчитываем требуемое в условиях задачи

( А + Т ) = ( 21 + 21 ) = 42 = 2.3

В одной молекуле ДНК тиминовый нуклеотид (Т) составляет 16 % от общего количества нуклеотидов.

Определите количество (в %) каждого из остальных нуклеотидов.

Решение. При решении задачи нужно исходить из того, что на основе принципа комплементарности количество А равно количеству Т, а Г — количеству Ц. Следовательно если Т — 16 %, то и А — 16 %. Тогда Г + Ц = 100 — 32 = 68, следовательно Г = Ц = 34 %.

Допустим во фрагменте молекулы ДНК:

АЦА АТА ААА ЦТТ ЦТА АЦА (ген вазопрессина)

тимин на 5-м месте нижней цепочки замещен гуанином.

Определить: а) как отразится это замещение на первичной структуре синтезируемого в клетке белка;

б) может ли повлиять это замещение на наследственность организма.

а) Так как последовательность триплетов в и-РНК следующая:

то последовательность аминокислот в белке соответственно:

цистеин — тирозин — фенилаланин — глутаминовая кислота — аспаргин — цистеин.

При замене тимина на 5-м месте гуанином, в молекуле и-РНК 5-е положение изменяется:

УГУ — УЦУ — поэтому мономером в белке станет вместо тирозина — серин, что, конечно, приведет к изменению первичной структуры белка.

б) Да, если организм одноклеточный; у многоклеточного организма, в том случае, если это генеративная мутация, она скажется на наследственности гибрида.

При решении всех задач из таблицы берется первое упоминание аминокислоты и ее триплета.

Менделирующие признаки.

Галактоземия (неспособность усваивать молочный сахар) наследуется как аутосомный рецессивный признак. Успехи современной медицины позволяют предупредить развитие болезни и избежать тяжелых последствий нарушения обмена.

Какова вероятность рождения больных детей в семье, где один из супругов гомозиготен по гену галактоземии, но развитие болезни у него было предотвращено диетой, а второй гетерозиготен по галактоземии?

с — галактоземия, Р сс х Сс

У человека ген карих глаз доминирует над голубыми глазами, а умение владеть преимущественно правой рукой над леворукостью. Обе пары генов расположены в разных хромосомах.

а) Какие могут быть дети, если их родители гетерозиготны?

б) Какими могут быть дети, если отец левша, но гетерозиготен по цвету глаз, а мать голубоглазая, но гетерозиготна в отношении умения владеть руками?

АВ Ав аВ ав
АВ ААВВ ААВв АаВВ АаВв
Ав ААВв ААвв АаВв Аавв
аВ АаВВ АаВв ааВВ ааВв
ав АаВв Аавв ааВв аавв

F 9/16 кареглазых правшей — 56,3 %

3/16 кареглазых левши — 18,7 %

3/16 голубоглазых правши — 18,7 %

1/16 голубоглазый левша — 6,3 %

Равновероятны четыре фенотипа (25%)

У человека некоторые формы близорукости доминируют над нормальным зрением, а цвет карих глаз над голубыми. Гены обоих пар не сцеплены. Какое потомство можно ожидать от брака гетерозиготного мужчины с женщиной, имеющей голубые глаза и нормальное зрение?

А -близорукость, Р АаВв х аавв

а — нормальное зрение. АВ ав

равновероятны (25%) четыре фенотипа.

У человека имеется две формы глухонемоты, которые определяются рецессивными аутосомными несцепленными генами.

а) Какова вероятность рождения здоровых детей в семье, где оба родителя страдают одной и той же формой глухонемоты, а по другой форме гетерозиготны?

б) Какова вероятность рождения здоровых детей в семье, где оба родителя страдают различными формами глухонемоты, а по второй паре генов глухонемоты каждый из них гетерозиготен?

а — глухонемота 1, а) Р ааВв х ааВв

Читайте также:  Может ли анемия быть причиной запоров

в — глухонемота 2, F ааВВ, ааВв, ааВв, аавв.

Некоторые формы катаракты и глухонемоты у человека передаются как аутосомные рецессивные несцепленные между собой признаки. Отсутствие резцов и клыков верхней челюсти также может передаваться как рецессивный признак.

а) Какова вероятность рождения детей со всеми тремя аномалиями в семье, где родители гетерозиготны по всем трем парам генов?

б) Какова вероятность рождения детей со всеми тремя аномалиями в семье, где один из родителей страдает катарактой и глухонемотой, но гетерозиготен по третьему признаку, а второй супруг гетерозиготен по катаракте и глухонемоте, но страдает отсутствием резцов и клыков на верхней челюсти?

а — катаракта, а) Р АаВвСс х АаВвСс

С — наличие резцов и клыков, Авс — // —

Неполное доминирование.

Серповидноклеточная анемия наследуется как неполностью доминантный аутосомный признак. Гомозиготные особи умирают обычно до полового созревания, гетерозиготные жизнеспособны, анемия у них проявляется чаще всего субклинически. Малярийный плазмодий не может использовать для своего питания S-гемоглобин, поэтому люди, имеющие эту форму гемоглобина, наряду с нормальным гемоглобином А, т.е. гетерозиготы, не болеют малярией.

а)Какова вероятность рождения детей, устойчивых к малярии, в семье, где один из родителей гетерозиготен в отношении серповидноклеточной анемии, а другой нормален в отношении этого признака? б)Какова вероятность рождения детей, неустойчивых к малярии, в семье, где оба родителя устойчивы к паразиту?

А — ген серповидноклеточной анемии,

а — ген нормального гемоглобина.

Серповидноклеточная анемия и талассемия наследуются как два признака с неполным доминированием; гены не сцеплены между собой и находятся в аутосомах. У гетерозигот по серповидноклеточной анемии, также как и у гетерозигот по талассемии, заболевание не имеет выраженной клинической картины. Во всех случаях носители гена талассемии или серповидноклеточной анемии устойчивы к малярии. У дигетерозигот развивается микродрепаноцитарная анемия (В.П. Эфроимсон, 1968). Гомозиготы по серповидноклеточной анемии и талассемии в подавляющем большинстве случаев умирают в детстве.

Определите вероятность рождения здоровых и устойчивых к малярии детей в семье, где оба родителя устойчивы к малярии, но по разным причинам.

А — серповидноклеточная анемия, Р Аавв х ааВв

в — N. F АаВв, ааВв, Аавв, аавв

50 % устойчивые и фенотипически

3. Многоаллельное наследование:

ПЕНЕТРАНТНОСТЬ.

Подагра определяется аутосомно-доминантным геном. Пенетрантность гена у мужчин равна 25 %, а у женщин — 0%.

Какова вероятность заболевания подагрой детей у гетерозиготных родителей?

Вероятность того, что в семье появятся дети, имеющие ген подагры, равна 75 %. Вероятность рождения мальчиков равна 1/2, а пенетрантность гена у мужчин составляет 25% (1/4 часть),следовательно, число болеющих составит 75% х 1/2 х 1/4 = 9,3%.

Отосклероз наследуется как доминантный аутосомный признак с пенетрантностью 30 %.

Отсутствие боковых верхних резцов наследуется как сцепленный с Х-хромосомой рецессивный признак с полной пенетрантностью.

Определите вероятность проявления у детей обеих аномалий одновременно в семье, где мать гетерозиготна в отношении обоих признаков, а отец нормален по обеим парам генов.

Х r — отсутствие резцов, пенетр. 100 %

F X r YAa = 1/8 = 12,5 % x 0,3 = 3,8 %, только мальчики.

Отосклероз наследуется как доминантный аутосомный признак с пенетрантностью 30 %.

Гипертрихоз наследуется как признак, сцепленный с У-хромосомой, с полным проявлением к 17 годам.

Определите вероятность проявления одновременно обеих аномалий в семье, где жена нормальна, а муж имеет обе аномалии, но мать его была нормальной женщиной.

А — отосклероз, пенетр. 30 %, Р ааХХ х АаХУ*

F АаХУ* — 1/4 = 25 % х 0,3 = 7,5 %, только

Задачи на эпистаз.

У лошадей доминантный ген С определяет серую окраску шерсти. В то же время он является супрессором по отношению к генам В, определяющим вороную масть и в -рыжую масть. То есть, вороная и рыжая масти могут проявляться только в случае рецессивной гомозиготы по гену С.

Определите расщепление потомства по фенотипу в случае скрещивания двух дигетерозиготных серых лошадей.

С — серый цвет, он же ген-супрессор,

с — ген, не оказывающий ингибиторного действия.

ВС Вс вС вс
ВС ВВСС ВВСс ВвСС ВвСс
Вс ВВСс ВВсс ВвСс Ввсс
вС ВвСс ввСС ввСС ввСс
вс ВвСс Ввсс ввСс ввсс

Фенотипы: серые лошади — 12 частей,

Так называемый «Бомбейский феномен» состоит в том, что в семье, где отец имел 1 группу крови, а мать 3, родилась девочка с 1 группой крови. Она вышла замуж за мужчину со 2 группой крови, и у них родились две девочки: первая с 4, вторая с 1 группой крови. Появление в 3-ем поколении девочки с 4 группой крови вызвало недоумение. Однако в литературе было описано еще несколько подобных случаев. По сообщению В. Маккьюсика некоторые генетики склонны объяснять это явление редким рецессивным эпистатическим геном, способным подавлять действие генов, определяющих группы крови А и В. Принимая эту гипотезу:

а) установить вероятные генотипы всех трех поколений, описанных в «Бомбейском феномене»;

б) определить вероятность рождения детей с 1 группой крови в семье первой дочери из 3-его поколения, если она выйдет замуж за такого же по генотипу мужчину, как она сама;

в) определите вероятность 1 группы крови у детей второй дочери, если она выйдет замуж за мужчину с 4 группой крови, но гетерозиготного по редкому эпистатичному гену.

х — эпистатичный ген (супрессор)

X — ген, не оказывающий эпистатического эффекта.

II F I B ixx (фенотипически 1-я группа — 0, αβ)
Р I B ixx х I A iX

б) P I A I B Xx x I A i B Xx

F I A I A xx; I A I B xx; I A I B xx; I B I B xx — 4/16 частей или 25 % (0, αβ).

I B X

I B x

F I A ixx; I B ixx — 2/8 или 25 % (0, αβ).

Задачи на полимерию.

Рост человека контролируется несколькими парами генов, которые взаимодействуют по типу полимерии. Если пренебречь факторами среды и условно ограничиться лишь тремя парами генов, то можно допустить, что в какой-то популяции самые низкорослые люди имеют все рецессивные гены и рост 150см, самые высокие — доминантные гены и рост 180 см.

а)Определите рост людей, гетерозиготных по всем трем парам генов роста.

б) Низкорослая женщина вышла замуж за мужчину среднего роста. У них было четверо детей, которые имели рост 165см, 160см, 155см, 150см. Определите генотип родителей и их рост.

Допустим, что у человека различия в цвете кожи обусловлены в основном двумя парами независимо расщепляющихся генов. А1А1А2А2 — черная кожа, aiaia2a2 — белая кожа; любые три аллеля черной кожи дают темную кожу, любые два — смуглую, один светлую (при наличии гена М, обеспечивающего синтез меланина).

Каковы генотипы следующих родителей:

а) оба смуглые, имеют одного черного и одного белого ребенка;

б) оба черные и имеют ребенка-альбиноса;

в) оба смуглые и дети тоже смуглые;

г) один смуглый, а другой светлый; из большого числа детей 3/8 смуглых, 1/8
темных, 1/8 белых.

A1a1A2A2

a1a1A2A2

4. Резус-фактор.

В простейшем варианте резус-положительность доминирует над резус-отрицательностью и практически наследование Rh-фактора имитирует моногенное наследование. Однако, ряд исследований показывает, что система Rh определяется тремя антигенными факторами, которые детерминированы тремя тесно сцепленными генами, внутри аллельных пар которых действует полное доминирование, а при взаимодействии между ними проявляется “эффект положения”. Все это обусловливает разнообразие вариантов резус-антигенов и соответственно резус-несовместимости. Обозначаются эти гены буквами С,Д, Е. Но не все подробности наследования резус-фактора выяснены.

Если речь идет о наследовании вообще фенотипа Rh+ или Rh-, то этот вопрос решается просто, исходя из принципов моногенного наследования при полном доминировании.

В семье родился резус — отрицательный ребенок.

Какие варианты фенотипов и генотипов по этому признаку могут быть у его родителей?

Катаракта и полидактилия у человека обусловлены доминантными, тесно сцепленными генами. Однако, сцепленными могут быть не обязательно только гены указанных аномалий. Например, ген катаракты может быть сцеплен с геном нормального строения кисти и, наоборот, ген нормального строения хрусталика глаза — с геном полидактилии.

1. Женщина унаследовала катаракту от своей матери, а полидактилию от отца. Ее муж нормален в отношении обоих признаков. Чего скорее можно ожидать у их детей: одновременного проявления катаракты и полидактилии, отсутствия обоих признаков или наличия только одной аномалии?

2. Какое потомство можно ожидать в семье, где оба родителя гетерозиготны по обоим признакам?

ААаа

F Аавв, ааВв — наличие только одной аномалии.

источник

Срочно. Серповидная анемия наследуется как не полностью доминантный аутосомный признак. Гомозиготные особи обычно умирают до

полового созревания, гетерозиготные жизнеспособны, анемия у них проявляется в легкой форме, так как у них два вида эритроцитов: нормальные и серповидноклеточные. Такие люди устойчивы к малярии. Какова вероятность рождения детей неустойчивых к малярии, если оба родителя устойчивы к этому заболеванию?

А -серповидная анемия
а -норма
АА -гибель
Аа -жизнеспособны, устойчивы к малярии
f1 ?
Р Аа х Аа
G А а А а
F1 АА Аа Аа аа Вероятность рождения ребенка неустойчивого к малярии 25%

природы. Сбор лекарственных и пищевых растений быстро подрывает их численность. Почему так происходит? Может ли изменить эти результаты и применение экологических правил?

Какова вероятность рождения здоровых детей в семье, где один из супругов страдает лёгкой формой талассемии, а другой нормален в отношении этой болезни? б) Какова вероятность рождения здоровых детей у родителей, страдающих лёгкой формой талассемии? 2. Серповидноклеточная анемия — не полностью доминантный аутосомный признак. У гомозиготных — смерть, у гетерозиготных болезнь выражается субклинически. Малярийный плазмодий не может питаться таким гемоглобином. Поэтому люди с таким гемоглобином не болеют малярией. а) Какова вероятность рождения здоровых детей, если один родитель гетерозиготен, а другой нормален? б) Какова вероятность рождения не устойчивых к малярии детей, если оба родителя к малярии устойчивы? 3. Полидактилия, близорукость и отсутствие малых коренных зубов передаются как доминантные аутосомные признаки, не сцепленные между собой. а) вероятность рождения нормального по 3-м признакам ребенка у родителей, страдающих всеми 3-мя недостатками, но гетерозиготных по всем 3-ем признакам? б) бабушка по линии жены — шестипалая, дедушка — близорукий, по другим признакам — нормальны. Дочь унаследовала обе аномалии. Бабушка по линии мужа не имела малых коренных зубов, дедушка нормален по всем 3-ем признакам. Сын унаследовал аномалию матери. Какова вероятность рождения детей без аномалий?

Какова вероятность рождения здоровых детей в семье, где один из супругов страдает лёгкой формой талассемии, а другой нормален в отношении этой болезни? б) Какова вероятность рождения здоровых детей у родителей, страдающих лёгкой формой талассемии? ЕСЛИ КТО МОЖЕТ ДО УТРА ОТВЕТЬТЕ

серповидную, в результате чего транспортируется меньше кислорода. Серповидно-клеточная анемия наследуется как не полностью доминантный признак, причём гомозиготное состояние гена приводит к гибели организма в детском возрасте. В семье оба супруга имеют признаки анемии.

серповидную, в результате чего транспортируется меньше кислорода.

Серповидно-клеточная анемия наследуется как не полностью доминантный признак, причём гомозиготное состояние гена приводит к гибели организма в детском возрасте.

В семье оба супруга имеют признаки анемии.

Какова процентная вероятность рождения у них здорового ребёнка?решение и ответ

умирают обычно до полового созревания, гетерозиготные жизнеспособны, анемия у них чаще всего проявляется субклинически. Малярийный плазмодий не может паразитировать в мутантном эритроците. Поэтому люди, имеющие эту форму гемоглобина, не болеют малярией. Какова вероятность рождения детей, устойчивых к малярии, в семье, где один родитель гетерозиготен в отношении серповидноклеточной анемии, а другой нормален в отношении этого признака.

источник

При наследовании некоторых признаков фенотип гетерозигот отличается от фенотипа как гомозигот по доминантному признаку, так и гомозигот по рецессивному признаку, и имеет среднее (промежуточное) значение между ними. Оказалось, что во всех этих случаях происходило генетическое взаимодействие между аллелями одного гена. Если в гетерозиготном состоянии ни один из аллелей не доминирует над другим, то есть не является в полной мере ни доминантным ни рецессивным аллелем, то такое генетическое взаимодействие называется неполным доминированием. При неполном доминировании расщепление по генотипу соответствует расщеплению по фенотипу (1:2:1). Как вы можете видеть это соотношение эквивалентно соотношению по генотипам для моногибридного скрещивания. Таким образом неполное доминирование является исключением из правил наследования для моногибридного скрещивания, которые описал Мендель. К счастью Мендель выбрал для своих экспериментов признаки, которые не имели неполного доминирования, так как в противном случае это сильно осложнило бы его первые исследования. Безусловно, когды мы говорим о взаимодействии генов, то подразумеваем взаимодействие продуктов этих генов.

Читайте также:  Сывороточный ферритин при железодефицитной анемии

Неполное доминирование может наблюдаться как у растений, так и у животных. Классическим примером неполного доминирования является наследование окраски цветков у растения ночная красавица (Mirabilis jalapa). При скрещивании растения с белыми цветками (гомозиготного рецессивного «aa») с растением, у которого цветки красные (гомозиготный доминант «AA»), в первом поколении мы получаем гибридное потомство («Aa»), которое будет иметь розовые цветки. А при скрещивании этих гибридов мы получим потомство с соотношением фенотипов 1 красный : 2 розовых : 1 белый. Используя правила составления файлов признаков создадим наш файл:

Генетический калькулятор: Вы можете открыть этот файл ( Incomplete dominance 1.txt ) и вычислить результаты для Фенотипов по признакам. В результате скрещивания гибридов первого поколения мы получим соотношение фенотипов 1 красные (AA) : 2 розовые (Aa) : 1 белые (aa). С версии 3.3 на вкладке «Найти вы можете выбрать любой фенотип и посмотреть из каких генотипов он состоит.

Другим примером неполного доминирования могут быть андалузские куры, которые получены от скрещивания чистопородных черных кур и «обрызганных белых» . Черная окраска кур обусловлена аллелем, который отвечает за синтез пигмента меланина («B»). У «обрызганных белых» кур этот аллель отсутствует («bb»). А у гетерозигот меланин синтезируется в небольшом количестве и дает только голубоватый отлив в оперении. При скрещивании таких гибридов соотношение по фенотипам будет 1 черная : 2 с голубым отливом : 1 белая. Файл признаков для этого случая должен быть таким:

Генетический калькулятор: Вы можете открыть этот файл ( Incomplete dominance 2.txt ) и вычислить результаты для Фенотипов по признакам. В результате скрещивания гибридов первого поколения мы получим соотношение фенотипов 1 черные (AA) : 2 с голубым отливом (Aa) : 1 обрызганные белые (aa). С версии 3.3 на вкладке «Найти вы можете выбрать любой фенотип и посмотреть из каких генотипов он состоит.

Иногда гетерозиготная особь превосходит по своим свойствам гомозиготных рецессивных и гомозиготных доминантных родителей. Можно сказать , что гетерозиготы имеют определенное селективное преимущество по сравнению с гомозиготными особями. Такое преимущество может быть не заметным и проявляется только при определенных условиях внешней среды. Это явление получило название сверхдоминирования. Но необходимо отметить, что сверхдоминирование является частным случаем неполного доминирования. Рассмотрим это на примере резистентности к заболеванию малярией, которую имеют гетерозиготные носители гена серповидноклеточной анемии.

Часто бывает так, что гетерозиготная особь внешне похожа на доминантную гомозиготную, а различия наблюдаются только при определенных условиях. Таких гетерозигот называют носителями признака. Это характерно для некоторых наследственных заболеваний у человека, когда необходимо определить является ли человек носителем болезни. В качестве примера можно привести наследование серповидноклеточной анемии.Основной функцией эритроцитов является транспорт кислорода от легких к тканям и углекислого газа от тканей к легким. Этот перенос возможен благодаря тому, что в эритроцитах есть специальный дыхательный пигмент — гемоглобин. Гемоглобин у людей с серповидноклеточной анемией отличается от нормального только тем, что в результате единичной мутации, глутаминовая кислота в положении 6 в B-цепи заменена валином. Такое незначительное различие однако оказывает существенное влияние на свойства и функции гемоглобина. Если в норме эритроциты имеют форму двояковогнутого диска, то у людей с этим заболеванием они преобретают серповидноклеточную форму, становятся более хрупкими и быстрее разрушаются. Уменьшение количества тромбоцитов вызывает у человека симптомы анемии. В настоящее время известно достаточно большое количество форм аномальных гемоглобинов. Наследование каждой из них определяется особым геном. Обозначим рецессивную аллель гена, который вызывает серповидноклеточную анемию, как » «, а доминантную аллель как » «. Люди с гомозиготные по рецессивному аллелю (» «) будут иметь серповидноклеточную анемию, а люди с генотипом » » будут совершенно здоровы. Впервые эта тяжелая форма анемии была обнаружена и описана в Вест-Индии в 1910 году. Большинство людей больных серповидноклеточной анемией умирало в раннем возрасте, до тех пор пока не стала доступной квалифицированная медицинская помощь. Дети с этим заболеванием рождаются у двух гетерозиготных родителей с генотипом » «, каждый из которых является носителем гена серповидноклеточной анемии. Эритроциты гетерозиготных носителей имеют нормальную форму и содержат смесь нормального и аномального гемоглобина. Гетерозиготные индивидуумы здоровы, но при определенных условиях у них могут появиться симптомы этого заболевания. Если содержание кислорода в крови таких людей понижается, то их эритроциты приобретают серповидноклеточную форму и становятся хрупкими. Это например может случиться высоко в горах, где как известно существует пониженная концентрация кислорода. Приступ болезни может вызвать также напряженная физическая работа, когда организм теряет жидкость. Носители гена » » наиболее часто встречаются в районах, где распространена малярия. Возбудителем малярии , часто летальной, является Plasmodium falciparum. Оказалось, что больные серповидноклеточной анемией обладают повышенной (но не абсолютной) врожденной устойчивостью к заражению этим паразитом. Паразит просто не может выжить в серповидных эритроцитах таких людей. Гетерозиготные носители гена, которые не болеют серповидноклеточной анемией, также обладают повышенной устойчивостью к малярии. Они в гораздо меньше степени болеют малярией, а если заболевают, то выздоравливают быстрее. Такое преимущество гетерозигот вероятно объясняет тот факт, что ген серповидноклеточной анемии до сих пор широко распространен в африканских популяциях людей. Таким образом этот случай является прекрасной иллюстрацией сверхдоминирования. Теперь давайте составим файл признаков:

Генетический калькулятор: Вы можете открыть этот файл ( Overdominance.txt ) и вычислить результаты для Фенотипов по признакам. В результате скрещивания гибридов » » мы получим соотношение фенотипов 1 нормальный гемоглобин (» ) : 2 носитель серповидно-клеточной анемии (» ) : 1 серповидно-клеточный гемоглобин ( ). С версии 3.3 на вкладке «Найти вы можете выбрать любой фенотип и посмотреть из каких генотипов он состоит.

Во всех рассмотренных до сих пор примерах контролировался одним геном, который был представлен одним из двух аллелей. Однако, известно довольно много случаев, когда признак проявлялся в нескольких различных вариантах и контролировался тремя или более аллелями одного гена. В соответствующих локусах гомологичных хромосом могут находиться любые два аллеля из такой группы. В таких случаях говорят о множественных аллелях. Например для локуса дрозофилы «white», который определяет окраску глаз, известно более 20 аллелей. Дикий аллель «w+» дает темно-красную окраску дикого типа. Противоположный аллель «w» — полностью подавляет образование пигмента и дает белый цвет глаз. Другие аллели этой группы, например «wa» (абрикосовый), «we’ (эозиновый), «wi» (цвет слоновой кости), обуславливают промежуточную окраску между темно-красной и абсолютно белой.

Генетический калькулятор: Вы можете открыть этот файл ( Multiple alleles.txt ) и вычислить результаты для Фенотипов по признакам. В качестве родителей вы можете выбрать например гетерозигот с генотипами C C , C или C C — в любых комбинациях и посмотреть какие получатся соотношения в Фенотипах по признакам. На вкладке «Найти вы можете выбрать любой фенотип и посмотреть из каких генотипов он состоит.

Такие признаки, как окраска шерсти у мышей, цвет глаз у мышей и группы крови у человека, контролируются множественными аллелями. В популяциях людей множественные аллели достаточно широко распространены. Например у человека в настоящее время известно по крайней мере 51 независимых локусов групп крови с более чем 70 аллелями. Рассмотрим это более подробно на примере наследования системы крови ABO

Но прежде чем приступить к рассмотрению этого примера необходимо определить некоторые понятия. Так как на примере наследования системы крови ABO мы рассмотрим также кодоминирование, которое также относится к разновидности аллельного взаимодействия. Существует определенное различие между неполным доминированием и кодоминированием. Это отличие заключается в том, что формирование фенотипа гетерозигот при кодоминировании обусловлено присутствием продуктов обоих взаимодействующих генов. Можно сказать, что аллели оказывают аддитивное влияние на фенотип.

источник

У овец серая окраска (А) шерсти доминирует над чёрной, а рогатость (В) – над комолостью (безрогостью). Гены не сцеплены. В гомозиготном состоянии ген серой окраски вызывает гибель эмбрионов. Какое жизнеспособное потомство (по фенотипу и генотипу) и в каком соотношении можно ожидать от скрещивания дигетерозиготной овцы с гетерозиготным серым комолым самцом? Составьте схему решения задачи. Объясните полученные результаты. Какой закон наследственности проявляется в данном случае?

AB Ab aB ab
Ab AABb
гибель
AAbb
гибель
AaBb
серый
рогат.
Aabb
серый
комол.
ab AaBb
серый
рогат.
Aabb
серый
комол.
aaBb
черный
рогатый
aabb
черный
комол.

2 серых рогатых
2 серых комолых
1 черный рогатый
1 черный комолый

Проявляется закон независимого расщепления (третий закон Менделя).

У овец серая окраска (А) шерсти доминирует над чёрной, а рогатость (В) – над комолостью (безрогостью). Гены не сцеплены. В гомозиготном состоянии ген серой окраски вызывает гибель эмбрионов. Какое жизнеспособное потомство (по фенотипу и генотипу) и в каком соотношении можно ожидать от скрещивания дигетерозиготной овцы с чёрным рогатым (гомозигота) самцом? Составьте схему решения задачи. Какой закон наследственности проявляется в данном случае?

AB Ab aB ab
aB AaBB
серый
рогатый
AaBb
серый
рогатый
aaBB
черный
рогатый
aaBb
черный
рогатый

Проявляется закон независимого расщепления (третий закон Менделя).

У кур встречается сцепленный с полом летальный ген (а), вызывающий гибель эмбрионов, гетерозиготы по этому гену жизнеспособны. Скрестили нормальную курицу с гетерозиготным по этому гену петухом (у птиц гетерогаметный пол — женский). Составьте схему решения задачи, определите генотипы родителей, пол и генотип возможного потомства и вероятность вылупления курочек от общего числа жизнеспособного потомства.

P X A Y x X A X a
G X A X A
Y X a
F1 X A X A YX A X A X a YX a
норм.
петух
норм.
курица
норм.
петух
гибель

Курицы составляют 1/3 жизнеспособного потомства, это 33,3%.

Серповидно-клеточная анемия (изменение нормального гемоглобина А на гемоглобин S, результате чего эритроциты принимают форму серпа) наследуется как неполностью доминантный аутосомный признак. Заболевание у гомозигот приводит к смерти, гетерозиготы жизнеспособны. Люди, имеющие гемоглобин S, не болеют малярией. Какова вероятность рождения детей, устойчивых к малярии в семье, где один из родителей гетерозиготен, а другой нормален в отношении этого признака.

АА- норма, Аа — серповидно-клеточная анемия, аа — летальный исход.

источник

Задача 1
Одна из пород кур отличается с укороченными ногами – доминантный признак (такие куры не разрывают огороды). Этот ген влияет также на длину клюва. При этом у гомозиготных по доминанте цыплят клюв так мал, что они не могут вылупиться из яйца и погибают. В инкубаторе хозяйства, разводящего только коротконогих кур (длинноногие куры не допускаются до размножения и отправляются на продажу), получено 3000 цыплят. Сколько среди них было коротконогих?
Решение:
1. Все имеющиеся в инкубаторе куры были гетерозиготны (так как гомозиготные коротконогие куры погибают до рождения).
2. При скрещивании между собой гетерозиготных особей образуется следующее потомство:

25% особей с генотипом АА – погибают до рождения,
50% особей с генотипом Аа – коротконогие,
25% особей с генотипом аа – длинноногие.

То есть коротконогих особей было 2/3 от всего выжившего потомства – примерно 2000 штук.
Ответ:
Коротконогих особей было 2000 штук.

Задача 2
При скрещивании между собой черных мышей всегда получается черное потомство. При скрещивании между собой желтых мышей одна треть оказывается черной, а две трети – желтой. Как можно объяснить эти результаты?
Решение:
1. Черные мыши являются гомозиготными, так как все их потомство единообразно.
2. Желтые мыши являются гетерозиготными, так как в их потомстве наблюдается расщепление. Поскольку гетерозиготные особи несут доминантный признак, то желтая окраска доминирует.
3. Желтые мыши при скрещивании между собой никогда не дают только желтых потомков. Кроме того, расщепление в их потомстве отличается от менделевского. Это позволяет предположить, что особи, гомозиготные по доминанте, не выживают. Анализ скрещивания подтверждает это предположение.

Задача 3
При скрещивании зеркальных карпов между собой уже в первом поколении наблюдалось расщепление: 152 потомка были зеркальными и 78 – с нормальной чешуей. Как объяснить эти результаты? Какое потомство получится от скрещивания зеркального карпа с обыкновенным?
Решение:
1. Зеркальные карпы является гетерозиготнымы, так как в их потомстве наблюдается расщепление. Поскольку гетерозиготные особи несут доминантный признак, то зеркальная чешуя доминирует.
3. Зеркальные карпы при скрещивании между собой никогда не дают только зеркальных потомков. Кроме того, расщепление в их потомстве отличается от менделевского. Это позволяет предположить, что особи, гомозиготные по доминанте, не выживают. Анализ скрещивания подтверждает это предположение.

Читайте также:  Анемия узи органов малого таза

Схема первого скрещивания:

ак как карпы с зеркальной чешуей являются гетерозиготами, а с нормальной чешуей — гомозиготами по рецессивному признаку, то при скрещивании зеркального карпа с нормальным половина потомства будет иметь зеркальную чешую, а вторая половина — нормальную. Анализ скрещивания подтверждает это предположение.

Схема второго скрещивания:

Ответ:
Доля наследственности в развитии шизофрении равна 0,645; доля среды в развитии этого патологического признака равна 0,355.

Задача 4
У мышей ген короткохвостости в доминантном гомозиготном состоянии является летальным, вызывая гибель зародыша на ранних стадиях развития. У гетерозигот хвосты короче, чем у нормальных особей. Определить фенотипы и генотипы потомства, возникающего от скрещивания длиннохвостых и короткохвостых мышей.
Решение:
Так как короткохвостые мыши гетерозиготы, то длиннохвостые — гомозиготы по рецессивному признаку.Следовательно, пари скрещивании короткохвостых мышей с длиннохвостыми половина потомства будут короткохвостыми, а половина длиннохвостыми, так как гетерозигота даёт два типа гамет, а гомозигота — один. Анализ скрещивания подтверждает это предположение.

Ответ:
Короткохвостые мыши — Аа, длиннохвостые — аа.

Задача 5
Анализ потомства от скрещивания двух дрозофил с закрученными крыльями и укороченными щетинками показал наличие разных фенотипов в следующем соотношении:

4 – с закручен. крыльями, укороченными щетинками;
2 – с закручен. крыльями, нормальными щетинками;
2 – с норм. крыльями, укороченными щетинками;
1 – с норм. крыльями, нормальными щетинками.

Как объяснить полученные результаты? Каков генотип исходных мух?
Решение:
1. Среди потомков наблюдается расщепление по обоим признакам. Это указывает на то, что скрещиваемые особи были дигетерозиготными.
2. Расщепление по каждой отдельно взятой паре признаков осуществляется в пропорции 2:1. Отклонение от расщепления в пропорции 3:1 свидетельствует о том, что в обоих случаях особи, гомозиготные по доминантному признаку, погибают.
Анализ скрещивания подтверждает это предположение.

Ответ:
Полученные результаты можно объяснить исходя из предположения, что в данном случае наблюдается независимое наследование двух признаков, кодируемых генами, которые в гомозиготном состоянии любого доминантного гена вызывают гибель организмов.

Задача 6
У мышей ген черной окраски тела (А) доминирует над геном коричневой окраски (а). Эти гены расположены в одной паре аутосом. Длина хвоста определяется генами В и b, расположенными в другой паре хромосом. Особи с нормальной длиной хвоста имеют генотип ВВ, с укороченной – Вb. Мыши, имеющие генотип bb, погибают в эмбриональном состоянии. Какое потомство следует ожидать от скрещивания двух дигетерозиготных по этим признакам животных?
Решение:
при скрещивании дигетерозиготных особей между собой в потомстве будет наблюдаться 16 генотипов:

Ответ:
В потомстве будут встречаться черные особи с укороченными хвостами (ААВb и АаВb), черные с нормальными хвостами (ААВВ и АаВВ), коричневые с укороченными хвостами (ааВb) и коричневые с нормальными хвостами (ааВВ) в соотношении 6:3:2:1.

Задача 7
У каракулевых овец ген, вызывающий развитие признака ширази — серого цвета шкурки, очень дорогого меха, доминантен по отношению к гену чёрной окраски, летален в гомозиготном доминантном состоянии. В гомозиготном состоянии такие гены вызывали смерть ягнят из-за недоразвития их желудочно-кишечного тракта. Украшая новорожденного ягненка густой, красивой шерстью, ген ширази убивал его.
Укажите генотипы и фенотипы потомства при скрещивании серых овец с чёрными.
Решение:
Дано:
А — ген серой окраски меха каракуля-ширази:
а — ген чёрной окраски меха каракуля.
Серые каракулевые овцы гетерозиготны (Аа), а чёрные — гомозиготны (аа). При скрещивании будут давать жизнеспособное потомство серого и чёрного цвета в соотношении 1:1.
Анализ скрещивания подтверждает это предположение.

Ответ:
Ген, вызывающий развитие признака ширази, летален в гомозиготном состоянии, поэтому в помёте каждой серой овцы и чёрного барана рождаются 50% ягнят ширази и 50% черных. Все они жизнеспособны.

Задача 8
Серповидноклеточная анемия и талассемия наследуются как два признака с неполным доминированием; гены не сцеплены между собой и находятся в аутосомах. У гетерозигот по серповидноклеточной анемии, так же как и у гетерозигот по талассемии, заболевание не имеет выраженной клинической картины. Но во всех случаях носители гена талассемии или серпо- видноклеточной анемии устойчивы к малярии. У двойных гетерозигот (дигиб- риды по обеим парам анализируемых признаков) развивается микродрепаноцитарная анемия.
Гомозиготы по серповидноклеточной анемии и талассемии в подавляющем большинстве случаев умирают в детстве. Определите вероятность рождения совершенно здоровых детей в семье, где один из родителей гетерозиготен по серповидноклеточной анемии, но нормален по талассемии, а второй — гетерозиготен по талассемии, но нормален в отношении серповидноклеточной анемии.
Решение:
Оформляем условие задачи в виде таблицы:

Определяем генотипы родителей, вступающих в брак: Sstt и ssTt.

Ответ:
Вероятность рождения совершенно здоровых детей (sstt) в этой семье равна 25%.

Задача 9
Гетерозиготный бык голштинской породы несет рецессивный ген, вызывающий отсутствие шерсти. В гомозиготном состоянии этот ген ведет к гибели теленка.
Определите вероятность рождения нежизнеспособного теленка от скрещивания этого быка с одной из его дочерей от нормальной коровы.
Решение:
A — ген, вызывающий наличие шерстного покрова; а — ген, вызывающий отсутствие шерстного покрова.
При скрещивании гетерозиготного быка (Аа) с гомозиготной по доминантному гену коровой (АА) всё потомство будет нормальное по фенотипу, а по генотипу 1/2 телят будет Аа и 1/2 — AA.
При скрещивании гетерозиготного быка с гомозиготной дочерью всё потомство будет нормальное (1/2 Aa и 1/2 AA. При скрещивании гетерозиготного быка с гетерозиготной дочерью вероятность рождения нежизнеспособного телёнка равна 1/4 (25%).
Анализ скрещивания подтверждает это предположение.

Схема первого скрещивания:

Схема второго скрещивания:

Ответ:
При скрещивании гетерозиготного быка с гетерозиготной тёлкой вероятность рождения нежизнеспособного телёнка равна 25%.

Задача 10
У гомозиготных по хлорофильной мутации растений нарушен синтез молекулы хлорофилла. Такие растения развиваются до тех пор, пока запасы питательных веществ в семени не иссякают, поскольку они не способны к фотосинтезу. Такие растения погибают на ранней стадии развития.
Определите вероятность появления нежизнеспособного потомства при скрещивании гетерозиготных растений по данному признаку.
Решение:
H — ген, нормального синтеза хлорофилла; h — ген, вызывающий нарушение синтеза хлорофилла.
При скрещивании гетерозиготных растений (Hh) друг с другом вероятность появления нежизнеспособного потомства равна 1/4.
Анализ скрещивания подтверждает это предположение.

Ответ:
При скрещивании гетерозиготных растений (Hh) друг с другом вероятность появления нежизнеспособного потомства равна 1/4 (25%).

источник

Генные мутации

Образец решения задач

Задача: Как изменится структура белка, если из кодирующего его участка ДНК

5’TTAТГТАААТТТЦАГ 3’ удалить пятый и 13-й слева нуклеотиды?

Построим молекулу иРНК по принципу комплементарности, а затем определим последовательность аминокислот в полипептидной цепи до изменений

ДНК: 5’ TTAТГТАААТТТЦАГ 3’– кодогенная цепь

3’ ААТАЦАТТТАААГТЦ 5’ – матричная цепь

а/к: лей – цис – лиз – фен – глу

Произведем указанные изменения в структуре ДНК и вновь определим последовательность аминокислот

Ответ: Если удалить пятый и тринадцатый слева нуклеотиды из цепи молекулы ДНК, то во втором положении цистеин замениться на лейцин, в третьем положении лизин замениться на аспарагин, в четвертом положении фенилаланин замениться на лейцин, а пятый глутамин отсутствует.

1. Участок цепи белка вируса табачной мозаики состоит из следующих аминокислот: сер-гли-сер-иле-тре-про-сер. В результате воздействия на иРНК азотистой кислоты цитозин РНК превращается в гуанин. Определите изменения в строении белка вируса после воздействия на иРНК азотистой кислотой.

2. Фрагмент кодогенной цепи ДНК в норме имеет следующий порядок нуклеотидов: ААААЦЦААААТАЦТТАТАЦАА. Во время репликации четвертый аденин и пятый цитозинслева выпали из цепи. Как называется такой тип мутации. Определите структуру полипептидной цепи, кодируемой данным участком ДНК, в норме и после выпадения нуклеотидов.

3. Участок ДНК, кодирующий полипептид, имеет в норме следующий порядок нуклеотидов: 5′ААААЦЦААААТАЦТТАТАЦАА 3′. Во время репликации триплет AЦЦ выпал из цепи. Определите, как изменится структура полипептидной цепи, кодируемая данным участком ДНК. Как называется такой тип мутаций?

4. Какие изменения произойдут в строении белка, если в кодирующем его участке ДНК: 5′ АААЦАААГААЦАААА 3′, между 10-м и 11-м нуклеотидами включить цитозин, между 13-м и 14-м — тимин, а на конце добавить еще один аденин?

5. Четвертый пептид в нормальном гемоглобине (гемоглобин А) состоит из следующих аминокислот: вал-гис-лей-тре-про-глу-глу-лизин. У больного с симптомом спленомегалии при умеренной анемии обнаружен следующий состав четвертого пептида: вал-гис-лей-тре-про-лиз-глу-лизин. Какие изменения произошли в структуре молекулы ДНК, кодирующей четвертый пептид гемоглобина, после мутации.

6. У человека, больного цистинурией (содержание в моче большего, чем в норме, числа аминокислот), с мочой выделяются аминокислоты, которым соответствуют следующие триплеты иРНК: УЦУ, УГУ, ГЦУ, ГГУ, ЦАГ, ЦГУ, ААА. У здорового человека в моче обнаруживаются аланин, серин, глутаминовая кислота и глицин. Напишите триплеты иРНК, соответствующие аминокислотам, имеющимся в моче здорового человека.

7. Участок гена, кодирующий полипептид, имеет в норме следующий порядок оснований: 5′ ААГЦААЦЦАТТАГТААТГ 3′. Какие изменения произойдут в белке, если во время репликации в шестом кодоне появилась вставка Т между вторым и третьим нуклеотидами?

8. У больных серповидно-клеточной анемией в 6-м положении b-цепи молекулы гемоглобина глутаминовая кислота замещена на валин. Чем отличается ДНК человека, больного серповидно-клеточной анемией, от здорового человека?

9. В нуклеотидной последовательности гена 5΄АААГТТАААЦТГАААГГЦ 3΄ происходит выпадение 5-го и 9-го нуклеотидов. Определите тип мутационного повреждения и структуру белка в норме и в результате возникших мутаций.

Геномные мутации

Образцы решения задач

При решении подобных задач нужно указать, при слиянии каких гамет формируется зигота с данным кариотипом, затем показать механизм возникновения этих гамет в процессе мейоза.

Задача 1: В клетках фибробластов эмбриона человека установлен кариотип

3А + ХХ. Объясните механизм возникновения такого кариотипа.

Общее количество хромосом в кариотипе 3А + ХХ равно 22×3+2=68 хромосом. Зигота с кариотипом 3А + ХХ могла возникнуть при слиянии: нормальной яйцеклетки (А+Х) с аномальным сперматозоидом (2А+Х).

.

23 хр. 23 хр. 23 хр. 23 хр.

Задача 2: Объясните механизм возникновения синдрома Дауна у мальчика (47,ХУ, 21+)

46 хр.

23 хр. 23 хр. 23 хр. 23 хр.

(21,21+Y)+(21+X) = (21,21,21+XY) =(47, XY, 21+)

1. Объяснить механизм возникновения кариотипа 2А+ХХХ у женщины. Указать общее количество хромосом в кариотипе и количество хромосом в гаметах. Указать название мутации? Охарактеризовать фенотип и назвать синдром?

2. Объяснить механизм возникновения кариотипа 2А+ХХУ у мужчины. Укажите общее количество хромосом в кариотипе и количество хромосом в гаметах. Охарактеризовать фенотип и назвать синдром?

3. В клетках эмбриона человека установлен кариотип 4А+ХУ. Объясните механизм образования этого кариотипа. Определите общее количество хромосом в каждой клетке мужчины и в гаметах его родителей.

4. В клетках эмбриона человека определен следующий кариотип: 3А+ХУ. Объясните механизм возникновения такого кариотипа. Укажите число хромосом в этом кариотипе и гаметах.

5. Объясните механизм возникновения кариотипа 2А+ХХУУ у мужчины. Определите число хромосом в этом кариотипе и гаметах.

6. Объясните механизм образования кариотипа 2А+ХХХХХ у женщины. Укажите число хромосом в этом кариотипе и гаметах.

7. Объяснить механизм возникновения кариотипа 2А+ХХХХ у женщины. Указать общее количество хромосом и количество хромосом в гаметах. Назовите вид мутации?

8. Какое максимальное количество Х-половых хромосом возможно в кариотипе у женщины при нерасхождении половых хромосом в процессе гаметогенеза у обоих полов? Ответ поясните схемой.

9. В клетках фибробластах эмбриона человека следующий кариотип –4А+ХХХУ. Каковы последствия такой мутации? Определите форму мутационной изменчивости?

10. Объяснить механизм нарушения кариотипа у мужчины с набором хромосом 2А+ХХХХХХУУ. Определить общее число хромосом.

11. Объясните механизм возникновения кариотипа 47,ХУ,15+ у мужчины. Определите число хромосом в гаметах. Назовите синдром и объясните механизм его возникновения.

12. В консультацию обратилась супружеская пара, у которой родился ребенок с синдромом Дауна. Родители оба здоровы. У материи в кариотипе выявлена транслокация части хромосомы 21 на хромосому 15 (trs 15 +21 ). Объясните механизм появления кариотипа больного ребенка. Могут ли в данной семье родиться здоровые дети?

источник