Меню Рубрики

Ферритин при анемии хронического заболевания

Анемии, сопровождающие инфекционные, ревматические и опухолевые заболевания, получили условное название «анемии хронических заболеваний» (АХЗ). Это нормохромные анемии. Частота их при указанных состояниях достигает 100%. АХЗ занимают по распространенности второе место после железодефицитной анемии (ЖДА).

Патогенез. При всем многообразии патогенетических механизмов АХЗ (угнетение эритропоэза, нарушение метаболизма железа, действие гуморальных ингибиторов эритропоэза) одним из основных является перераспределение железа в клетки макрофагальной системы, активирующейся при различных воспалительных (инфекционных и неинфекционных) или опухолевых процессах. Поступающее в организм и высвобождающееся из эритроцитов железо переходит главным образом в депо, где и накапливается в макрофагах в виде ферритина. В то же время перенос железа из клеточного ферритина к трансферрину нарушен, что влечет за собой снижение уровня сывороточного железа. Развивается перераспределительный или функциональный дефицит железа вследствие накопления и блокады освобождения железа в тканевых макрофагах, что приводит к снижению доставки железа к эритрокариоцитам костного мозга, нарушению эритропоэза и развитию анемии.

В последние годы обсуждается роль некоторых провоспалительных цитокинов (ИЛ-1, ИЛ-6, ФНО-α) в патогенезе АХЗ (рис. 30). Экспериментальными исследованиями показано, что ИЛ-1 и ФНО-α способны повышать синтез ферритина и подавлять экспрессию гена эритропоэтина (ЭПО) в клетках почек и печени и соответственно снижать содержание ЭПО в плазме крови. У больных ревматоидным артритом, хроническими инфекциями, опухолевыми заболеваниями, находящихся на гемодиализе и перитонеальном диализе отмечается повышение уровня ФНО-α и ИЛ-1 в сыворотке крови, следствием чего является снижение синтеза ЭПО.

Эти же цитокины вовлечены в нарушение продукции ЭПО при острых и хронических воспалительных заболеваниях почек, таких как острый гломерулонефрит, хроническая почечная недостаточность.

Таким образом, активация макрофагов сопровождается секрецией ряда провоспалительных цитокинов, ингибирующих синтез ЭПО, что, по-видимому, является основным механизмом в развитии анемического синдрома при хронических заболеваниях.

У больных с анемией хронических заболеваний костный мозг характеризуется нормальным или сниженным количеством эритрокариоцитов, нормальным или повышенным содержанием сидеробластов.

Периферическая кровь. Чаще анемия при АХЗ носит нормохромный нормоцитарный, реже умеренно гипохромный характер (рис. 31). Количество ретикулоцитов нормальное или уменьшенное.

Изменения метаболизма железа характеризуются перераспределительным дефицитом железа (снижение сывороточного железа, ОЖСС, трансферрина, НТЖ и повышение содержания сывороточного ферритина). Ферритин относится к острофазным белкам, поэтому повышенный уровень сывороточного ферритина при АХЗ может отражать не только запас железа в организме, но и явиться проявлением острофазного ответа, что ограничивает его использование в качестве показателя определения запасов железа.

Дифференциальная диагностика истинного и перераспределительного дефицита железа возможна только при условии определения уровня сывороточного ферритина (табл. 6).

Таблица 6. Дифференциальная диагностика анемии хронических заболеваний и железодефицитной анемии
Показатели крови ЖДА регенераторная стадия ЖДА гипорегенераторная стадия Анемия хронических заболений
RBC N c c
Hb c c c
MCV c c N
MCH c c N
MCHC c c N
RDW c c N
Ретикулоциты N c c
Эритроцикариоциты к/м п c c
Fe сыворотки с c c
Трансферрин п п c
Насыщение трансферрина Fe с c c
Ферритин с c п
ИЛ-1 N N п
ФНО (TNF) N N п

Ошибочная диагностика ЖДА может повлечь за собой назначение препаратов железа (парентерально) с развитием вторичного гемосидероза.

В последнее время для дифференциальной диагностики ЖДА и АХЗ используется новый тест — определение растворимых трансферриновых рецепторов. На рис. 32 представлены результаты определения растворимых трансферриновых рецепторов (sТfR.) в контрольной группе пациентов без анемии, у больных ЖДА и АХЗ. Результаты свидетельствуют о высокой диагностической эффективности теста.

Железодефицитная анемия сопровождается усилением синтеза трансферриновых рецепторов, экспрессией их на поверхности клеток и увеличенным освобождением в кровь, где определяется повышенное содержание растворимых рецепторов трансферрина.

  1. Беркоу Р. Руководство по медицине The Merck manual. — М.: Мир, 1997.
  2. Руководство по гематологии / Под ред. А.И. Воробьева. — М.: Медицина, 1985.
  3. Долгов В.В., Луговская С.А., Почтарь М.Е., Шевченко Н.Г. Лабораторная диагностика нарушений обмена железа: Учебное пособие. — М., 1996.
  4. Козинец Г.И., Макаров В.А. Исследование системы крови в клинической практике. — М.: Триада-Х, 1997.
  5. Козинец Г.И. Физиологические системы организма человека, основные показатели. — М., Триада-Х, 2000.
  6. Козинец Г.И., Хакимова Я.Х., Быкова И.А. и др. Цитологические особенности эритрона при анемиях. — Ташкент: Медицина, 1988.
  7. Маршалл В.Дж. Клиническая биохимия. — М.-СПб., 1999.
  8. Мосягина Е.Н., Владимирская Е.Б., Торубарова Н.А., Мызина Н.В. Кинетика форменных элементов крови. — М.: Медицина, 1976.
  9. Рябое С.И., Шостка Г.Д. Молекулярно-генетические аспекты эритропоэза. — М.: Медицина, 1973.
  10. Наследственные анемии и гемоглобинопатии / Под ред. Ю.Н. Токарева, С.Р. Холлан, Ф. Корраля-Альмонте. — М.: Медицина, 1983.
  11. Троицкая О.В., Юшкова Н.М., Волкова Н.В. Гемоглобинопатии. — М.: Изд-во Российского университета дружбы народов, 1996.
  12. Шиффман Ф.Дж. Патофизиология крови. — М.-СПб., 2000.
  13. Baynes J., Dominiczak M.H. Medical Biochemistry. — L.: Mosby, 1999.

Источник: В.В.Долгов, С.А.Луговская, В.Т.Морозова, М.Е.Почтарь. Лабораторная диагностика анемий: Пособие для врачей. — Тверь: «Губернская медицина», 2001

источник

Ф.Ю.Копылов, Д.Ю.Щекочихин
Первый МГМУ им. И.М. Сеченова Кафедра профилактической и неотложной кардиологии ФППОВ, Москва

Анемия с давних времен является спутником человечества. Выдающийся немецкий врач Йоханнес Ланге (Johannes Lange) уже в 1554 г. дал название анемии как «болезни девственниц (morbus virgineus)». Он считал эту болезнь специфичной для целомудренных девушек, а причиной указывал задержку менструальной крови [1], ссылаясь на описание Гиппократа, представленное в сочинении «О болезнях девушек».

За последующие несколько столетий мы существенно продвинулись в понимании патофизиологии анемии, и в настоящий момент крупные исследования посвящаются оценки роли анемии в развитии и течении различных заболеваний на популяционном уровне. Касательно сердечно-сосудистых заболеваний (ССЗ) доказано, что анемия является независимым фактором риска неблагоприятных исходов ССЗ у пациентов с хронической сердечной недостаточностью (ХСН) и хронической почечной недостаточностью (ХПН). Для общей популяции больных ССЗ большинство данных свидетельствует о том, что анемия является и здесь независимым фактором риска, однако данных для включения в официальные рекомендации пока недостаточно [2].

Определение понятия и распространенность
Согласно определению ВОЗ, анемия регистрируется у взрослых женщин при снижении концентрации гемоглобина ниже 12 г/дл, а у мужчин ниже 13 г/дл [3]. На рис. 1 проиллюстрировано применение данных критериев на примере крупной выборки исследования NHANES III (n=40 000) [4]. Применение критерия 12 г/дл для женщин позволяет включить в число страдающих анемией существенно большее число лиц, по сравнению с мужчинами. Этот факт находит свое отражение и в других исследованиях, в которых распространенность анемии у женщин почти в 3 раза превышает таковую у мужчин: 13 и 4,8% соответственно [5], и должен быть принят во внимание при оценке результатов различных исследований.


Рис 1. Применение критериев ВОЗ для определения анемии на популяционном уровне [4]

Распространенность анемии среди пациентов с сердечно-сосудистыми заболеваниями относительно хорошо изучена. Среди пациентов с ишемической болезни сердца (ИБС) составляет от 10 до 30% [6, 7], а на примере ХСН — варьирует в широком диапазоне от 4 до 61% (в среднем 18%) в зависимости от тяжести основного заболевания и применяемых критериев анемии [8].

Этиология и патогенез
Причинами анемии у пациента кардиологического профиля могут быть все факторы характерные для общей популяции. Однако если рассматривать группу больных с прогрессирующими ССЗ и в первую очередь с ХСН, то основными этиопатогенетическими факторами анемии можно считать следующие:

1. Анемия хронических заболеваний.
2. Анемия за счет гемодилюции (псевдоанемия).
3. Анемия за счет недостатка железа/витаминов.
4. Нарушение функции почек — снижение продукции эритропоэтина.
5. Действие лекарств.

Анемия хронических заболеваний
Анемия, возникающая у пациентов с инфекцией, воспалением, неоплазиями, хронической почечной недостаточностью и продолжающаяся более 1-2 мес, обозначается как анемия хронических заболеваний (АХЗ) — «анемия воспаления», «цитокинопосредованная анемия». Характерной чертой этого типа анемии является сочетание пониженного уровня железа сыворотки с достаточными его запасами в ретикулоэндотелиальной системе (РЭС). АХЗ по распространенности занимает 2-е место среди анемий (после железодефицитной — ЖДА) [9]. В случае наличия ХСН данный вид анемии является самым распространенным и отмечается у 58% пациентов [10].

В настоящее время считается, что в основе АХЗ лежит иммуноопосредованный механизм: цитокины и клетки РЭС вызывают изменения в гомеостазе железа, пролиферации эритроидных предшественников, продукции эритропоэтина и продолжительности жизни эритроцитов [11]. Открытие гепсидина (hepcidin) — железорегулирующего острофазового белка — позволило во многом прояснить связь между иммунным механизмом нарушения гомеостаза железа и развитием АХЗ: именно через усиление синтеза в печени гепсидина под влиянием воспалительных стимулов, (главным образом интерлейкина-6), происходят снижение абсорбции железа в кишечнике и блокирование высвобождения железа из макрофагов (рис. 2). Дизрегуляция гомеостаза железа ведет к последующей недостаточности доступного для эритроидных предшественников железа, ослаблению пролиферации этих клеток вследствие негативного влияния на них нарушения биосинтеза гема.


Рис 2. Механизм действия гепцидина: угнетение всасывание железа в кишечнике, замедление мобилизации железа из депо, способствуя его накоплению в макрофагах

Анемия вследствие гемодилюции (псевдоанемия)
Данная причина анемии связана с избыточным «разбавлением» крови и характерна для пациентов с повышенным объемом плазмы (ХСН, ХПН, беременность). Предполагается, что у многих больных ХСН анемия может быть вызвана гемодилюцией [12]. Однако, несмотря на увеличение общего объема плазмы у всех пациентов с систолической и у 71% с диастолической ХСН, истинный дефицит эритроцитов имеется у 88% больных анемией при диастолической ХСН и у 59% при систолической ХСН [13].

Анемия вследствие недостатка железа/витаминов
Еще 50 лет назад было показано непосредственное влияние железодефицита на ферментативные процессы, даже в отсутствии анемии [14]. Экспериментальные исследования на животных показали возможность непосредственного влияния железодефицита на диастолическую функцию, провоцирование сердечной недостаточности, фиброза миокарда, уменьшение уровня циркулирующего эритропоэтина, влияние на молекулярные сигнальные пути и активацию воспаления [15].

Железодефицитная анемия является самой распространенной формой в популяции, однако у пациентов кардиологического профиля уступает первенство АХЗ и составляет до 21% [16].

Распространенность железодефицитного состояния при ХСН во многом зависит от критериев определения. Если учитывать лишь снижение насыщения трансферина менее 16%, то его можно обнаружить у 78% анемичных и 61% неанемиченых больных ХСН, если к критериям добавить уровень ферритина 30-100 мг/л, то распространенность снизится до 20 и 15% соответственно [17]. В другом исследовании, где критериями железодефицита были значения ферритина менее 100 мг/л при насыщении трансферина менее 16%, нарушения выявлены у 61% анемичных и 43% неанемичных пациентов ХСН [18].

Таким образом, можно говорить о высоком распространении у больных ХСН как абсолютного (определяемого как уровень ферритина 100 мг/л и процента сатурации трансферина 200 мкг/л.

Разграничение АХЗ и ЖДА имеет важное практическое значение: некорректная трактовка пациента с АХЗ как имеющего дефицит железа влечет за собой неэффективную терапию железом с риском развития осложнений (перегрузки железом, особенно при внутривенном введении). Показатели дифференциальной диагностики при АХЗ, ЖДА и их сочетаниях представлены в таблице.

Показатели дифференциальной диагностики при АХЗ и ЖДА

Показатели ЖДА АХЗ
Сывороточное железо Снижено Снижено
ОЖСС Повышена Снижена или N
Средний корпускулярный объём Снижен Снижен (30%)
Насыщение трансферрина Снижено N или снижено
Сывороточный ферритин Снижен N
Железо костного мозга Снижено или отсутствует N
Тест с пероральным железом Подъем hb Нет подъема Hb

Анемия при почечной недостаточности
У больных с хроническими заболеваниями почек наиболее важный вклад в развитие анемии вносят снижение продукции эритропоэтина вследствие уменьшения массы функциональных тканей почек и антипролиферативное действие уремических токсинов. Кроме того, развитие анемии может быть вызвано сокращением продолжительности жизни эритроцитов со 120 дней до 70-80 дней, а также потерей крови, ингибированием эритропоэза в результате хронического воспаления, недостатком свободного железа в организме и дефицитом нутриентов, побочным действием лекарств. По современным представлениям, в случае ХПН можно говорить о едином патогенетическом механизме с АХЗ [20].

У большинства пациентов с ХСН и анемией имеется хроническая болезнь почек (ХБП) различной степени, то есть снижение скорости клубочковой фильтрации (СКФ) 2 . Такое сочетание анемии, ХБП и ХСН D.S.Silverberg и соавт. предложили называть кардиоренальным анемическим синдромом, каждое из трех составляющих которого ухудшает течение остальных двух (рис. 3) [21].


Рис 3.
Взаимосвязь при кардиоренальном анемическом синдроме (модифицированна по [21])

Действие лекарств
Применительно к кардиологической практике можно выделить три основных лекарственных воздействия, которые могут провоцировать возникновение и поддержание анемии:

1. Непосредственное подавление костного мозга (вплоть до апластической анемии) могут вызывать следующие лекарственные препараты: НПВС, цитостатики, мерказолил, метамизол (анальгин).
2. Невозможность восстановления присутствующего в пище трехвалентного железа до двухвалентного (всасывающегося во много раз быстрее, нежели трехвалентное) в связи с относительной гипоацидностью (обусловленной сопутствующим применением антисекреторных или антацидных препаратов).
3. Ингибиторы ангиотензинпревращающего фермента и антагонисты к рецепторам ангиотензина могут уменьшать продукцию эритропоэтина и чувствительность к нему костного мозга, так как ангиотензин является мощным стимулятором синтеза эритропоэтина и эритропоэза [22].

Кроме того, необходимо помнить, что нитраты способны вызывать метгемоглобинемию и привести к снижению кислородной емкости крови, однако этот эффект наблюдается в основном при использовании очень высоких доз [23].

Анемия — фактор риска ССЗ
Наличие анемии у пациентов само по себе ассоциировано с пожилым возрастом, нарушением функции почек, сахарным диабетом, тяжелой сердечной недостаточностью, снижением переносимости физических нагрузок и низкими показателями качества жизни [24]. В этой связи наибольшую ценность представляют исследования, выполненные на больших выборках, позволяющие при анализе провести коррекцию на другие факторы риска.

Из исследований, проведенных на популяционном уровне, по данному вопросу можно выделить ARIC-study (Atherosclerosis Risk in Communities), в котором проводилось наблюдение более 6 лет за почти 14 000 пациентов без ССЗ [25]. При оценке анемии как фактора риска ССЗ оказалось, что пациенты со сниженным уровнем гемоглобина имели риск развития указанных заболеваний почти в 1,5 раза выше вне зависимости от всех остальных факторов риска ССЗ (рис. 4).


Рис 4. Кривые Каплана-Мейера для ССЗ у мужчин и женщин, стратифицированных по наличию или отсутствию анемии [25]

Анализ других работ по оценке популяционного риска анемии дал противоречивые результаты. Исследователи пришли к выводу о необходимости дополнительных изысканий для определенных рекомендаций в этой области [2].

Анемия и ИБС
Широко известно, что ряд некоронарных заболеваний, в патогенезе которых имеет место гемическая или тканевая гипоксия, может инициировать клинические проявления ИБС, оказывать отягчающее влияние на характер течения основного заболевания. Возможным механизмом представляется усиление симпатической активности и сердечного выброса за счет длительной индуцированной гипоксией вазодилятации, что приводит к гипертрофии левого желудочка и увеличению размеров сердца и, соответственно, к повышению потребления кислорода [26]. Также у пациентов с ИБС по сравнению со здоровыми отмечена сниженная толерантность миокарда к низким уровням гемоглобина [27].

Читайте также:  Серповидноклеточная анемия изменение нормального гемоглобина

Вопросы сочетания ИБС и анемий представлены в научной литературе немногочисленными источниками. При рассмотрении вопроса влияния анемии на исходы ИБС можно выделить три основных направления исследований:

  • роль предоперационной анемии у пациентов, повергающихся реваскуляризации;
  • влияние анемии на исходы острого коронарного синдрома (ОКС);
  • влияние анемии на исходы хронической ИБС в популяции.

    Наличие анемии перед проведением чрескожного коронарного вмешательства у пациентов с инфарктом миокарда (ИМ) с подъемом сегмента ST достоверно увеличивает риск большого кровотечения как на протяжении 30 сут после ИМ, так и в течение 1 года [28]. Анализ более чем 45 000 случаев чрескожного коронарного вмешательства при ОКС и стабильной ИБС показал, что анемия является независимым фактором риска госпитальной летальности у мужчин и серьезных сердечно-сосудистых осложнений и у мужчин, и у женщин [7]. Повышенный риск неблагоприятных исходов также отмечается у пациентов со сниженным уровнем гемоглобина перед аортокоронарным шунтированием [29].

    Сходные результаты показывают исследования, посвященные исходам ОКС в зависимости от наличия анемии, в которых снижение уровня гемоглобина признается значительным фактором риска прогрессирования ИБС, развития ХСН и нарушений ритма, а также смертности [30]. N.C.Meneveau и соавт., помимо признания анемии как независимого фактора риска смерти при ОКС, предлагают включить ее наравне с другими факторами в шкалу риска GRACE (Global Registry of Acute Coronary Events) для более точного прогноза [31].

    Исследования, проведенные на популяционном уровне [32] и у больных ИБС [33], подтверждают наличие U-образной зависимости между уровнем гемоглобина и сердечно-сосудистой заболеваемостью и смертностью, т. е. высокий уровень гемоглобина (>13 г/дл) ассоциирован с плохим прогнозом, наряду с низким уровнем.

    Анемия и ХСН
    Факт увеличения общей и сердечно-сосудистой смертности при наличии анемии у больных с ХСН подтвержден в большом количестве исследований. Так, в ретроспективном исследовании SOLVD показано, что снижение гематокрита на 1% увеличивает общую смертность больных ХСН на 2,7% [34]. Исследование OPTIME продемонстрировало увеличение риска смерти или повторной госпитализации на 12% при уровне гемоглобина менее 12 г/дл [35]. При этом более тяжелый функциональный класс СН по NYHA ассоциировался с более низким уровнем гемоглобина и высоким уровнем креатинина. Имеются данные о наиболее худшем прогнозе относительно сердечно-сосудистой смертности при ЖДА по сравнению другими видами анемии [36].

    Анемия при ХСН также является независимым фактором риска более тяжелого течения заболевания: высокого функционального класса, сниженной переносимости физических нагрузок, когнитивных нарушений, низкого качества жизни [37].

    Анемия и гипертоническая болезнь
    Данные о соотношениях анемии с гипертонической болезнью, несмотря на их широкое распространение, достаточно немногочисленны. Имеются указания на связь анемии с повышением артериального давления в ночные часы и среднего артериального давления (сумма диастолического давления плюс 1/3 пульсового) по данным суточного мониторирования [38], а также на достоверно более широкую распространенность нормоцитарной анемии у пациентов с неконтролируемым уровнем артериального давления — 20%, по сравнению с пациентами поддерживающих нормотонию — 16% (р=0,03) [39].

    Лечение
    Терапевтические мероприятия, направленные на устранение анемии, должны быть обращены, в первую очередь, на устранение этиологического фактора. В соответствие с этим пациенты должны проходить полноценное обследование для выяснения причины анемии. В рамках данного обзора мы остановимся на АХЗ и ЖДА, составляющих по отдельности или в сочетании подавляющее большинство анемий в кардиологической практике. В данных ситуациях в качестве основной терапии применяются пероральные и внутривенные препараты железа, а также препараты эритропоэтина.

    Препараты железа
    В случаях выявления устранимой причины ЖДА лечение должно быть направлено на устранение этиологического фактора (эрозивно-язвенные и опухолевые поражения ЖКТ, миома матки, энтериты, алиментарная недостаточность и др.). В этом случае, а также при наличии неустранимой причины непроходимо проводить патогенетическую терапию препаратами железа (ПЖ).

    Необходимо отметить ошибочность мнения о возможности коррекции дефицита железа с помощью пищевых продуктов с высоким содержанием железа. Предвидя установление данного факта, врач Мелампас (Melampus) в Греции за 1500 лет до н. э. для избавления принца Ификласа Тезалия (Iphyclus of Thesaly) от полового бессилия, возникшего у него на почве постгеморрагической анемии, давал ему вино с ржавчиной, соскобленной с лезвия старого ножа [40].

    В настоящее время мы имеем широкий выбор препаратов железа (ПЖ) для приема внутрь, которые назначаются в большинстве случаев (при отсутствии специальных показаний). Основные ПЖ в виде солей представлены сульфатом, глюконатом, хлоридом, фумаратом, глицинсульфатом. Среди ПЖ в виде железосодержащих комплексов, обладающих большей степенью абсорбции, имеются железо-полимальтозный комплекс, железо-сорбитоловый комплекс, протеин сукцинилат железа, железо-сахаратный комплекс.

    Необходимо учитывать, что всасывание железа может уменьшаться под влиянием содержащихся в некоторых пищевых продуктах веществ — фитинов (рис, соя), фосфатов (рыба, морепродукты), танин (чай, кофе). Препараты железосодержащих комплексов (в частности, гидрокси-полимальтозный комплекс) лишены подобных недостатков, поскольку пищевые продукты и медикаменты не оказывают влияния на всасываемость железа в виде трехвалентной формы.

    Оптимальная тактика ведения больных ЖДА предполагает насыщающую и поддерживающую терапию ПЖ. Длительность насыщающей терапии зависит от темпов прироста и сроков нормализации показателей гемоглобина, составляя в среднем 3-4 нед, при этом минимальная суточная доза свободного железа должна составлять не менее 100 мг (оптимальная 150-200 мг). Поддерживающая терапия показана в тех ситуациях, когда сохраняется или трудно устранима причина дефицита железа (меноррагии, беременность, патология кишечника).

    Оценка результатов лечения:

    1. Изменение содержания ретикулоцитов. Считается, что ретикулоцитарный криз появляется на 3-7 сут от начала лечения препаратами железа. Содержание ретикулоцитов может при этом возрастать до 10-20 промилле. Максимальная ретикулоцитарная реакция наступает на 7-10 сут от начала лечения.
    2. Прирост гемоглобина начинается с 5 сут при правильном лечении. Если в течение этого периода прироста гемоглобина нет, то это говорит о плохом усвоении препаратов железа. Нормальным считается прирост гемоглобина 1% в сутки или на 0,15 г/сут.
    3. Восстановление числа эритроцитов и цветного показателя.

    В большинстве случаев для коррекции дефицита железа при отсутствии специальных показаний ПЖ следует назначать внутрь. Показания для внутривенного введения ПЖ у больных ЖДА определяется конкретной клинической ситуацией, в частности, основными являются: состоянием кишечного всасывания и переносимостью пероральных ПЖ.

  • пероральный путь введения не сопровождается эффектом или плохо переносится;
  • у больного имеется поражение кишечника;
  • массивная потребность в железе.

    При переводе на парентеральный прием обязательно надо контролировать уровень сывороточного железа. Без этого показателя вводить внутривенно препараты железа противопоказано (кроме массивной кровопотери). При переводе с перорального на парентеральный прием, пероральное железо должно быть отменено за 2-3 дня.

    Несколько другой взгляд относительно пути введения препаратов железа при ХСН представлен в обзоре D.S.Silverberg и соавт. [41]. При сравнении применения пероральных и внутривенных форм ПЖ оказалось, что при отдельном применении, а также в сочетании с эритропоэтином пероральных форм у больных с ХСН не удается достичь того положительного эффекта, получаемого при внутривенном введении, вероятно, за счет блокирования всасывания железа гепсидином. Данное заключение стало возможно после ряда исследований в этой области, которые начались с в некотором смысле революционного подхода в лечении пациентов с ХСН и дефицитом железа, предложенного английскими исследователями, по аналогии с лечением у больных с почечной патологией — внутривенного введения препаратов железа вне зависимости от наличия анемии без эритропоэтина [42]. В данном исследовании, а также в двух других[43, 44] показано достоверное увеличение уровня гемоглобина, фракции выброса левого желудочка, функционального класса ХСН, качества жизни, функции почек, снижение натрийуретических пептидов, С-реактивного белка, а также уменьшение частоты госпитализаций.

    В другом исследовании терапии внутривенным железом при ХСН у больных с дефицитом железа вне зависимости от наличия анемии показано улучшение функционального класса ХСН, потребления кислорода и общего состояния даже при отсутствии повышения гемоглобина [45]. Эти данные подтверждают возможность непосредственного влияния железа на митохондриальные процессы окисления. Учитывая существенные различия по клинико-фармакологическим параметрам между препаратами железа необходимо отметить, что в данных исследованиях применялось железо в форме гидроксидсахарозного комплекса (венофер), по применению которого у больных ХСН накоплена в настоящий момент наибольшая доказательная база.

    На этом фоне интересным представляется появление в распоряжении врачей нового препарата железа в виде карбоксимальтозатного комплекса (феринъект), обладающего существенно более удобным режимом введения (1 раз в неделю) и лучшим профилем безопасности по отношению к другим препаратам железа. Данная форма железа изучалась в одном из недавних крупных исследований, аналогичном упомянутым выше, у пациентов с ХСН и дефицитом железа вне зависимости от наличия анемии -FAIR-HF, показавшем при 6-месячном наблюдении достоверный переход в более низкий функциональный класс ХСН и улучшение показателей качества жизни при применении внутривенного препарата железа вне зависимости от снижения уровня гемоглобина [46]. Результаты данной работы позволяют частично ответить на вопрос о первичной роли железодефицита по сравнению с наличием анемии в патогенезе ХСН и необходимости его максимально безопасной коррекции.

    В настоящий момент отсутствуют полноценные данные о влиянии монотерапии внутривенными препаратами железа на смертность и другие неблагоприятные исходы ХСН при долговременном наблюдении, для окончательного решения этого вопроса необходимы длительные крупные исследования, по результатам которых будут внесены изменения в соответствующие рекомендации.

    Эритропоэтины
    Применение рекомбинантного эритропоэтина и его в 3 раза более длительно действующего деривата дарбепоэтина в кардиологии наиболее всего изучено у пациентов с ХСН. В нескольких небольших исследованиях применения эритропоэтина в качестве монотерапии или в сочетании с парентеральными препаратами железа было показано снижение смертности и частоты госпитализаций [47]. Наряду с этим показан положительный эффект от данной терапии на различные клинические и функциональные показатели: систолическую и диастолическую функцию правого и левого желудочка, дилатацию камер сердца, гипертрофию левого желудочка, функциональный класс сердечной недостаточности, переносимость физических нагрузок, потребление кислорода, калорийность потребляемой пищи, качество жизни, активность эндотелиальных прогениторных клеток [47]. Данные эффекты не могут полностью объяснены воздействием на эритропоэз и связываются с плеотропными эффектами эритропоэтина, в частности активацией эндотелиальной NO синтетазы и AKT (протеинкиназа В), которая медиирует фосфорилирование, приводя к длительной NO-зависимой вазодилатации [48].

    Эритропоэтины, позволяющие увеличить уровень гемоглобина в среднем на 2 г/дл, считаются основными препаратами для коррекции выраженной анемии, в том числе из-за редкости возникновения побочных реакций. Однако данные полученные в онкологических исследованиях свидетельствуют о повышенной частоте сердечно-сосудистых неблагоприятных исходов (в основном за счет тромботических осложнений) при превышении уровня гемоглобина более 12 г/дл [49]. При этом стоит отметить, что дозы эритропоэтинов в данных исследованиях в несколько раз превышали, используемые при ХСН. С другой стороны, у пациентов с ХСН и ХПН не выявлено дополнительного преимущества повышения уровня гемоглобина выше 11-12 г/дл, более того отмечено повышенное количество неблагоприятных исходов при повышении уровня гемоглобина выше 13 г/дл, так называемая U-образная зависимость уровня гемоглобина и смертности [50]. В настоящий момент, в отсутствии официальных рекомендаций по целевому уровню гемоглобина при ХСН, большинство исследователей сходятся на значении 12 г/дл [47].

    Заключение
    В настоящее время существуют достоверные данные о необходимости активного выявления и коррекции анемии у пациентов кардиологического профиля. Особый интерес вызывает вопрос терапии анемии при длительно протекающей сердечно-сосудистой патологии, в частности ХСН. Накопленная доказательная база у данных больных по лечению анемии эритропоэтинами и/или препаратами внутривенного железа не позволяет однозначно определить целесообразность и безопасность такого подхода. Данные исследований по применению внутривенных препаратов железа в качестве монотерапии у больных ХСН и железодефицитом вне зависимости от наличия анемии могут существенно расширить показания для их применения при данной патологии. Этот и некоторые другие вопросы, как например, наличие универсального маркера ответа при терапии препаратами железа, целевых уровнях гемоглобина при различных заболеваниях и многие другие требуют своего разрешения в научных работах.

    До получения результатов крупных исследований лучшим подходом остается считать применение пероральных препаратов железа у пациентов с умеренной ЖДА, а у больных с тяжелой анемией возможна комбинация внутривенного железа и препаратов эритропоэтина, что позволит уменьшить дозы и снизить частоту побочных эффектов. При ХСН даже только с дефицитом железа без анемии можно рассмотреть назначение внутривенных препаратов железа.

    источник

    Анемия при хроническом заболевании (анемия вследствие нарушения реутилизации железа) является мультифакториальной и часто сопровождается дефицитом железа. Для постановки диагноза обычно требуется наличие хронической инфекции, воспаления, рака, микроцитарной или погранично-нормоцитарной анемии, показателей сывороточного трансферрина и ферритина, которые определяются в значениях между типичными для железодефицитной анемии и сидеробластной анемии. Терапия направлена на лечение основного заболевания, а если оно носит необратимый характер, сводится к применению эритропоэтина.

    Во всем мире анемия при хроническом заболевании является второй по распространенности. На ранних этапах эритроциты нормохромные, но с течением времени они становятся микроцитарными. Основной проблемой является неспособность эритроидного ряда костного мозга к пролиферации в ответ на анемию.

    [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

    Этот тип анемии следует заподозрить при наличии хронического заболевания чаще инфекционного, воспалительного процесса (особенно ревматоидного артрита) или злокачественного новообразования, однако аналогичный процесс имеет место при любой инфекции или воспалении.

    [11], [12], [13], [14], [15], [16]

    Выделяют три патофизиологических механизма:

    • умеренное укорочение времени жизни эритроцитов по пока неясным причинам у больных раком или с хроническими гранулематозными инфекциями;
    • нарушение эритропоэза вследствие снижения продукции ЭПО и ответа костного мозга на него;
    • нарушение внутриклеточного метаболизма железа.

    Ретикулярные клетки удерживают железо, полученное из старых эритроцитов, делая недоступным для синтеза гемоглобина; таким образом, невозможна компенсация анемии путем повышения продукции эритроцитов. Макрофагальные цитокины (например, IL-1, фактор некроза опухоли а, интерферон ) у больных с инфекцией, воспалительным процессом и раком вызывают или способствуют уменьшению продукции ЭПО и нарушают метаболизм железа.

    [17], [18], [19], [20], [21], [22]

    Клинические проявления, как правило, те, которые определяют основное заболевание (инфекция, воспаление или злокачественное новообразование).

    [23], [24], [25], [26], [27]

    Анемия на фоне хронического заболевания предполагается у больных с микроцитарной или погранично-нормоцитарной анемией с хронической инфекцией, воспалением или раком. Если есть подозрение на хроническую анемию, необходимо исследовать сывороточное железо, трансферрин, рецептор трансферрина и сывороточный ферритин. Уровень гемоглобина обычно превышает 80 г/л, пока дополнительные процессы не приведут к прогрессированию анемии. Если в дополнение к хроническому заболеванию имеется железодефицитное состояние, уровень сывороточного ферритина обычно составляет менее 100 нг/мл, и, если при наличии инфекции, воспаления или злокачественного новообразования уровень ферритина несколько меньше 100 нг/мл, предполагается, что параллельно с вызванной хроническим заболеванием анемией имеется и железодефицит. Вместе с тем, учитывая возможность ложного повышения уровня сывороточного ферритина в качестве маркера острой фазы, в случаях высокого уровня сывороточного ферритина (> 100 нг/мл) в дифференциальной диагностике железодефицита и анемии на фоне хронического заболевания помогает определение рецептора сывороточного трансферрина.

    Читайте также:  Препараты при лечении гипохромной анемии

    [28], [29], [30], [31], [32], [33], [34]

    источник

    Автор: Андреев Г. И., магистр техники и технологии, выпускник (2003 г.) СПбГПУ, факультет медицинской физики и биоинженерии, кафедра физико-химических основ медицины.

    Железодефицитной анемией (ЖДА) и скрытыми формами дефицита железа страдает 50-80% населения России. Определение концентрации ферритина в сыворотке крови позволяет эффективно дифференцировать ЖДА от других типов анемий. Кроме того, высокие концентрации ферритина характерны для воспалительных и инфекционных процессов, некоторых онкологических заболеваний.

    В статье описаны структура и функции ферритина, его роль в метаболизме железа, характерные для разных состояний изменения его концентрации в крови, дан сравнительный анализ характеристик ИФА-наборов зарубежных производителей и первой российской тест-системы.

    Ионы железа выполняют в организме человека очень важную функцию. Они входят в состав белков, осуществляющих перенос кислорода, цитохромов и железосеропротеинов, железосодержащих ферментов. Поэтому недостаток железа в организме приводит ко многим негативным последствиям. Одним из них является развитие железодефицитной анемии (ЖДА). Согласно данным ВОЗ, от скрытого дефицита железа и ЖДА страдает около одной трети населения планеты. В некоторых регионах России этот показатель достигает 70-80%. Проявления данного заболевания разнообразны и иногда приводят к тяжелым последствиям.

    Избыточное содержание железа в организме также опасно. Оно приводит к развитию токсикозов, патологическому повышению уровня активных форм кислорода.

    Вследствие этого важно иметь интегральный показатель оценки содержания железа в организме. Высокоинформативным маркером, характеризующим метаболизм железа, является ферритин.

    Для определения содержания ферритина в сыворотке крови используются иммунометрические методы. В связи с поливалентностью данного антигена можно создать специфические и высокочувствительные системы определения его концентрации. В России в настоящее время определение ферритина в лабораторной практике распространено очень слабо. Это объясняется недостаточной информированностью населения и медицинского персонала о диагностической значимости данного показателя, а также сравнительно высокой стоимостью проведения анализа при помощи наборов реагентов зарубежных производителей. Первая в нашей стране иммуноферментная система для определения концентрации ферритина в сыворотке крови человека, основанная на применении моноклональных антител, разработана в аналитической лаборатории компании «Алкор Био» . Для успешного применения в лабораторной практике создаваемый продукт должен удовлетворять всем требованиям к его качеству, не уступать по аналитическим характеристикам зарубежным аналогам, а также обладать стоимостью, обеспечивающей возможность проведения регулярных скрининговых обследований.

    Ферритин — растворимый в воде комплекс гидроксифосфата железа с белком апоферритином. Наибольшее его количество находится в клетках печени, селезенки, костного мозга и ретикулоцитах, где наиболее интенсивно проходят процессы синтеза, созревания и деградации эритроцитов и ферритин активно участвует в метаболизме и перераспределении железа в организме.

    У позвоночных защита от токсического эффекта железа и активных форм кислорода осуществляется двумя железосвязывающими белками: внеклеточными трансферринами и внутриклеточными ферритинами. Оба сохраняют железо в безопасной окисленной форме Fe(III), которая не катализирует продукцию свободных радикалов. Ферритин содержит 15-20% общего количества железа в организме.

    Концентрация ферритина в сыворотке крови позволяет оценить общие запасы железа в организме [1]. У здоровых людей содержание ферритина в плазме крови составляет 20-350 нг/мл. Падение концентрации ниже 10 нг/мл свидетельствует о развитии железодефицитной анемии, в то время как при избыточном накоплении железа концентрация ферритина может возрастать до нескольких тысяч нг/мл.

    Железодефицитная анемия является самым распространенным анемическим синдромом и составляет приблизительно 80% заболеваемости всеми видами анемий. Ее распространенность определяется физиологическими, патологическими, экологическими и социальными факторами. Предполагают, что в мире страдает железодефицитной анемией около 1,8 миллиарда человек (ВОЗ, 1998). Согласно данным ВОЗ (1992), дефицит железа определяется как минимум у 20-25 % всех младенцев, у 43 % детей в возрасте до 4 лет и 37 % детей от 5 до 12 лет. Даже в развитых странах эти цифры не ниже 12 % у детей до 4 лет и 7 % детей в возрасте от 5 до 12 лет [2].

    Из-за физиологических ежемесячных кровопотерь и вынашивания детей более чем у 51 % женщин детородного возраста во всем мире обнаруживается нехватка железа вплоть до отсутствия его запасов. Дефицит железа в III триместре беременности обнаруживается почти у 90% женщин и сохраняется после родов и лактации у 55% из них [2].

    В России частота железодефицитной анемии приближается к показателю стран третьего мира. В некоторых регионах России (Север, Восточная Сибирь, Северный Кавказ) скрытый дефицит железа выявляется у 70-80% жителей. Это связано и с неблагоприятной экологической обстановкой, и с нерациональным питанием, вызванным снижением уровня жизни.

    Негативные проявления данного заболевания разнообразны и тяжело переносимы. Это синдром хронической усталости, внезапная потеря сознания, нарушения менструального цикла, дизурические расстройства, извращение вкусовых ощущений, нарушения психики. ЖДА является отягощающим фактором при заболеваниях сердечно-сосудистой и пищеварительной систем. У детей анемии часто являются причиной замедления умственного и физического развития, снижения успеваемости. Взрослые страдают от мышечной слабости, длительной ремиссии после перенесенных инфекций, что приводит к экономическим потерям. Кажущаяся странность, несерьезность симптомов (сонливость, быстрая утомляемость) заставляют людей долгое время не обращаться к врачу с четкими жалобами, а приспосабливаться к болезни. Патология же прогрессирует и в итоге может привести к серьезным, порой необратимым нарушениям функций организма. Так, анемии являются частой причиной внутриутробной смерти плода, низкого веса новорожденных, они обуславливают до 20% материнских смертей [3].

    В настоящее время общепринято, что диагноз железодефицитных состояний надо ставить до развития полной картины заболевания, т.е. до возникновения гипохромной анемии. При дефиците железа страдает весь организм, а гипохромная анемия — это поздняя стадия болезни.

    В 1983 г. П. М. Альперин и Ю. Г. Митерев предложили новую классификацию форм железодефицитной анемии, которая в полной мере отражает все основные этиологические факторы, приводящие ее к развитию. Они выделяют:

    • постгеморрагические анемии;
    • нутритивные (алиментарные) анемии;
    • анемии при повышенном расходе железа в организме (например, при беременности, лактации, росте и созревании);
    • железодефицитные анемии при исходно недостаточном уровне железа;
    • железодефицитные анемии при его недостаточной резорбции (например, постгастрорезекционные, агастральные, анэнтеральные);
    • при перераспределении железа в результате инфекции, при воспалительных и опухолевых процессах;
    • при нарушении транспорта железа (например, гипотрансферринемические и атрансферринемические).

    Регулярное определение ферритина используется для отслеживания быстрого истощения запасов железа во время беременности, у доноров крови и у пациентов, регулярно подвергающихся гемодиализу. Оно также имеет ценность для диагностики гемохроматозов, при мониторинге пациентов, которые регулярно подвергаются переливанию крови или железозаместительной терапии и составляют группу риска по аккумулированию избыточных запасов железа. Концентрация ферритина может повышаться при некоторых острых и хронических заболеваниях печени, при голодании и истощении, наличии воспалительных процессов, инфаркте миокарда. Можно использовать определение ферритина для диагностики и мониторинга онкологических заболеваний.

    Показатели обмена железа в норме и при различных видах анемий (Авцын А. П., 1990).

    Показатели метаболизма железа Норма Железодефицитная анемия Инфекционная, опухолевая анемия Нарушение синтеза гема и глобина
    Железо сыворотки, мкг/дл:
    — мужчины 50-160 180
    — женщины 40-150 170
    ОЖСС, мкг/дл 250-400 >400 180 200
    Коэффициент насыщения трансферрина, % 15-54 60
    Ферритин, нг/мл 20-350 350 360-1000

    К современным методам ранней диагностики железодефицитных состояний (гипосидероза) относятся определение концентрации железа в сыворотке, общей железосвязывающей способности сыворотки (ОЖСС), трансферрина и ферритина в сыворотке. Показатели метаболизма железа при различных видах анемий представлены в Таблице 1.

    Избыточное содержание железа в организме называют сидерозом или гиперсидерозом. В 1971 г. Dagg e. a. предложили клиническую классификацию гиперсидерозов. Различают следующие формы гиперсидероза:

    • паренхиматозные формы (с преимущественным отложением железа в клетках паренхимы печени). К ним относятся: первичный наследственный гемохроматоз, сидероз при некоторых видах цирроза печени, вторичный сидероз при портокавальном анастомозе, сидероз при врожденной атрансферринемии;
    • «ретикулоэндотелиальные» формы, к которым относятся: генерализованные отложения железа при хронических рефрактерных (к специфическому лечению) анемиях, гемолитических анемиях, многократных гемотрансфузиях, при избыточном парентеральном введении железа, сидерозе банту;
    • локальные формы: идиопатический гемосидероз легких, легочно-почечный синдром Гудпасчера и гемосидероз почечного происхождения при ночной пароксизмальной гемоглобинурии.

    При этих патологических состояниях концентрация ферритина в плазме крови повышена вследствие нарушения баланса обмена железа.

    В то время как истощение запасов железа в организме является единственной причиной снижения уровня сывороточного ферритина, повышение уровня ферритина наблюдается не только при избытке запасов железа, но также в некоторых других ситуациях.

    Определение ферритина можно использовать для диагностики и мониторинга ряда онкологических заболеваний. Ценность определения ферритина как онкомаркера подтверждают многие исследования [4] , [5].

    Высокие концентрации ферритина обнаруживаются в сыворотке пациентов с карциномой поджелудочной железы, раком легких, гепатомой и нейробластомой, острым миелобластным и лимфобластным лейкозами, лимфогранулематозом (болезни Ходжкина). Концентрация сывороточного ферритина обычно повышена при метастазирующем раке молочной железы. При онкологических заболеваниях концентрация ферритина в крови повышена как вследствие его активной секреции, так и за счет повышенного распада клеток и высвобождения цитоплазматического ферритина, например, при химиотерапии. После успешного лечения концентрация ферритина в сыворотке крови снижается.

    Концентрация ферритина может также повышаться при некоторых острых и хронических заболеваниях печени (например, алкогольное поражение, гепатит), при голодании и истощении, воспалительных заболеваниях (легочные инфекции, остеомиелит, хронические инфекции мочевых путей, ревматоидный артрит, системная красная волчанка, ожоговая болезнь), инфаркте миокарда [5, [6]. В этих случаях основной причиной увеличения содержания ферритина в крови является некроз клеток и высвобождение внутриклеточной фракции.

    Определение ферритина в клинической практике позволяет улучшить диагностику нарушений метаболизма железа. Несомненными достоинствами метода являются также малая инвазивность и простота выполнения. Однако правильная интерпретация результатов требует ясного понимания как процессов метаболизма железа, так и учета других влияющих на уровень сывороточного ферритина факторов, например поражения печени или воспалительных процессов.

    В настоящее время многие зарубежные производители предлагают наборы реагентов для иммуноферментного определения содержания ферритина в сыворотке, однако они очень мало распространены в России вследствие высокой стоимости и недостаточной информированности как медиков, так и населения о диагностической значимости данного показателя. Таким образом, необходимость разработки отечественной тест-системы для определения концентрации ферритина в крови человека очевидна.

    Молекула ферритина образована Н- и L- типами субъединиц (Н — heavy и L — light), У человека аминокислотные последовательности Н и L идентичны на 54%. Полипептидная цепь Н-типа человека состоит из 183 аминокислотных остатков, ее молекулярная масса 21 кДа. Молекулярная масса L-субъединицы, состоящей из 175 аминокислот, около 19 кДа.

    Каждая молекула апоферритина собрана из 24 структурно равнозначных субъединиц, вносящих одинаковый вклад в формирование четвертичной структуры. В 24-мерах смешанного состава (гетрополимерах) Н- и L- субъединицы имеют одинаковую конформацию, предоставляя возможность формирования гетерополимеров с любой из возможных композицией субъединиц.

    Субъединицы организованы таким образом, чтобы образовать полую, симметричную глобулу с наружным и внутренним диаметрами 125 и 80 ангстрем соответственно [7] , [8] (Рисунок 1).

    Рисунок 1. Четвертичная структура молекулы ферритина.

    Ближайшие к зрителю субъединицы изображены толстыми лентами, внутри глобулы в центре видно железосодержащее ядро.

    Молекулы ферритина могут образовывать суперолигомеры — димеры и тетрамеры [9].

    Субъединицы плотно упакованы, за исключением того, что в местах контакта трех субъединиц есть узкие каналы диаметром около 1 нм, пронизывающие глобулу. Эти каналы, проходящие вдоль осей третичной симметрии, являются главным входным путем для железа и сайтами окисления Fe(II) [10].

    Все молекулы ферритинов имеют полость для хранения железа. Полагают, что главным фактором, определяющим формирование ядра, является распределение зарядов на внутренней поверхности.

    Ферритины, изолированные из тканей млекопитающих, состоят из смеси изоферритинов с широким спектром состава субъединиц и содержания железа [11] , [12]. Возможны 25 изоферритинов с соотношением субъединиц: Н24L, H23L1, H22L2… HL24, но в основном спектр распределения субъединиц в изоферритинах заключен в пределах H22L2— Н2L22. Обычно ферритины с преобладанием L-субъединиц характерны для органов, запасающих железо (печень и селезенка), и эти ферритины обычно имеют относительно высокий средний уровень содержания железа (более 1500 атомов Fe на молекулу). Богатые Н-субъединицами ферритины, характерные для сердца и мозга, имеют низкое содержание железа (менее 1000 атомов Fe на молекулу).

    Вследствие различий по составу субъединиц молекулярная масса изоферритинов колеблется от 440 кДа у легких фракций изоферритинов селезенки до 500 кДа у тяжелых мышечных ферритинов. Общая молекулярная масса ферритина может удваиваться за счет включения кластера железа и достигать 900 кДа [13]. Однако ферритины обычно не полностью насыщены железом и обладают молекулярной массой, промежуточной между апоферритином и полностью заполненным холоферритином.

    Субъединицы ферритинов содержат небольшое число углеводородов. Состав и количество сахаров сильно варьируют в зависимости от тканевой принадлежности, и составляет 2,4% массы апоферритинов печени и селезенки и около 5% у сердечных изоформ [14].

    Ферритин выполняет в организме двойственную функцию. Он запасает в клетках растворимое железо, которое при необходимости может быть легко задействовано для синтеза различных веществ. В то же время ферритин защищает организм от токсического действия ионов металлов. Помимо железа ферритин способен связывать и другие ионы, некоторые из которых токсичны (алюминий, бериллий).

    Известно, что связывание железа трансферрином и ферритином требует предварительного изменения степени окисления металла от +2 до +3, а его высвобождение из этих молекул сопровождается обратным процессом восстановления. Важнейшую роль в этих процессах играют также низкомолекулярные хелатирующие соединения. Они являются необходимым промежуточным звеном в переносе железа от транспортных и депонирующих белков к местам утилизации железа.

    Первое прямое свидетельство присутствия ферритина в сыворотке крови получили Reissman и Dietrich в 1956 г [15]. Первоначально ферритин был найден в сыворотке пациентов с некрозом печени и перегрузкой железом, однако после развития чувствительного иммунорадиометрического анализа его удалось обнаружить и в нормальной сыворотке [16].

    Внеклеточные ферритины, найденные в сыворотке и биологических жидкостях, составляют меньшую часть от общего ферритина. Плазматический ферритин имеет низкое содержание железа (0,02-0,07 мкг Fe на мкг белка в сравнении с более 0,7 мкг Fe на мкг белка в печени и селезенке).

    Источник и механизм продукции плазматического ферритина до сих пор во многом неясен. Часть циркулирующего ферритина выделяется из разрушающихся тканей, например при циррозе печени, инфаркте миокарда. Однако наличие в молекуле специфически гликозилированных субъединиц и тонкая регуляция количества ферритина в крови в соответствии с уровнем железа в норме и при различных патологических процессах показывает, что главным источником плазматического ферритина является его активная секреция. В частности, секреция выполняется фагоцитами, осуществляющими деградацию гемоглобина. При этом ферритин выполняет функцию транспорта железа от клеток ретикулоэндотелиальной системы к гепатоцитам, синтезирующим гемоглобин de novo.

    Читайте также:  Какие продукты надо употреблять при анемии

    Места синтеза ферритина, подлежащего секреции, и тканевого ферритина также различны. Показано, что секреторный белок синтезируется на полирибосомах, связанных с мембранами эндоплазматического ретикулума, где осуществляется дальнейший процессинг молекулы, включая гликозилирование. Синтез ферритинов, секреция которых не предусмотрена, протекает на свободных цитоплазматических рибосомах [17].

    Предположение, что секретируемые ферритины функционально активны, основано на идентификации специфических рецепторов на различных клеточных мембранах. Такие рецепторы были описаны на клетках печени, лимфоцитах и эритробластах человека. До настоящего времени неясно, сколько типов рецепторов существует, но главное очевидное различие найдено между ними на клетках печени и других типах клеток. Рецепторы печени обладают специфичностью с учетом соотношения Н- и L-субъединиц, в то время как лимфоцитарные рецепторы специфичны к Н-цепи.

    Хотя многие тканевые изоферритины могут высвобождаться в плазму, обнаружены четкие различия в динамике циркуляции тканевого и плазматического ферритинов. Так, скорость удаления из плазмы тканевых ферритинов очень высока (период полувыведения Т1/2составляет примерно 9 мин), в то время как количество инъецированного меченого плазматического ферритина уменьшалось на 50% лишь спустя 30 часов. В норме в плазме способны накапливаться изоформы L24и гликозилированные молекулы, богатые L-субъединицами, но содержащие мало железа [18].

    Значительное увеличение содержания характерных для опухолевых клеток фракций ферритинов с повышенным количеством Н-субъединиц может быть следствием нескольких причин:

    • интенсивного некроза опухолевой ткани из-за недостаточности трофики быстро растущей опухоли;
    • эффективной противораковой терапии, приводящей к прямому высвобождению цитозольного ферритина;
    • активного синтеза и секреции специфических опухолевых форм ферритинов;
    • патологического перераспределения железа с его накоплением в клетках ретикулоэндотелиальной системы;
    • изменений функционирования печени, приводящих к нарушению циркуляции ферритина.

    Взаимосвязь плазматического ферритина со многими физиологическим процессами в организме позволяет отнести его к белкам острой фазы и к опухолевым маркерам.

    Таблица 2. Содержание ферритина в сыворотке крови в норме.

    Возраст Содержание ферритина,
    нг/мл (мкг/л)
    Новорожденные 25-200
    1 месяц 200-600
    6 месяцев — 15 лет 30-140
    Взрослые:
    Мужчины 20-350
    Женщины 10-150
    Беременность:
    Первый триместр 56
    Второй триместр 27
    Третий триместр 10

    В первый месяц после рождения концентрация ферритина повышена в связи переходом от фетальной формы гемоглобина к взрослой.

    Содержание ферритина в плазме у женщин репродуктивного возраста значительно меньше, чем у мужчин. Это связано с ежемесячными физиологическими кровопотерями, а также с деторождением. За весь период беременности дополнительно расходуется около 1 г железа, что явно прослеживается в прогрессивном снижении ферритина в крови. В третьем триместре беременности концентрация ферритина минимальна и граничит со значениями, характерными для ЖДА. Лактация также сопровождается повышенным расходом железа, так как молочная железа продуцирует белок с подобными трансферрину свойствами — лактоферрин.

    В постменопаузальный период содержание железа и концентрация ферритина в организме женщин возрастают, приближаясь к показателям у мужчин [19].

    В случае перегрузки организма железом концентрация ферритина превышает 400-500 нг/мл, а при ярко выраженном гемохроматозе может достигать 10 000 нг/мл и более.

    Несмотря на низкое содержание железа в плазматическом ферритине, концентрация ферритина в плазме коррелирует как с резервными запасами железа в организме, так и его общим количеством. Определяя в сыворотке крови содержание ферритина, на самом деле мы определяем концентрацию белковой части комплекса, апоферритина. Концентрация апоферритина в крови соответствует общему уровню ферритина в тканях и, следовательно, содержанию запасов железа.

    Данное утверждение подтверждается многочисленными опытами [20] , [21]. Для здоровых лиц был предложен фактор эквивалентности (коэффициент пересчета): 1 нг ферритина в 1 мл сыворотки соответствует 8 мг (143 мкмоль) железа, хранимого в депо.

    Таким образом, диагностическая ценность измерения сывороточного ферритина неоспорима.

    В настоящее время для измерения концентрации ферритина в сыворотке крови используются иммунологические методы анализа. Для правильного определения исследуемого антигена необходимо использовать высокоспецифичные к анализируемому веществу антитела. Правильный выбор антител можно сделать, зная особенности антигенного строения ферритина.

    Ферритин представляет собой сложный белок с выраженной четвертичной структурой (см. раздел 3.). Вследствие этого большинство антигенных детерминант на его поверхности являются конформационно зависимыми. В литературе описаны специфичность и аффинность широкого круга как поликлональных, так и моноклональных антител к ферритину. Показано, что антитела обладают специфичностью в межтканевом отношении. Так, в зависимости от относительного содержания в молекуле Н- и L-субъединиц антитела проявляют различное сродство к ферритину. Например, в работе [22] при использовании в качестве иммуногена ферритина из печени человека перекрестная реактивность полученных моноклональных антител с селезеночным ферритином составляла 74%, а с сердечным ферритином — всего 13%.

    Белковая оболочка, лишенная кластера железа, проявляет большую иммунологическую активность по сравнению с ферритином, нагруженным железом. Вероятно, это вызвано повышением конформационной лабильности молекулы, что способствует вовлечению во взаимодействие с антителами участков, не доступных или малодоступных в нативной молекуле. Адсорбция апоферритина на полистироле приводила к практически полной утрате иммунологической реактивности, что также указывает на конформационный характер эпитопов молекулы [23].

    Антитела к одиночным субъединицам ферритина выявили существенные отличия в их антигенном строении. Антигенные детерминанты Н- и L-субъединиц ферритина отличаются друг от друга.

    Из общего числа кластеров эпитопов, максимальное количество которых ограничено числом субъединиц ферритина (24) только 3-4 доступны для одновременного связывания антител. Данный вывод о максимальной валентности ферритина сделан в работе [24] на основании геометрических расчетов по известному внешнему диаметру сферической глобулы ферритина (12-13 нм) и минимальному расстоянию между центрами двух молекул антител, способными расположиться на антигенной поверхности без стерических затруднений (12-14 нм).

    Определение концентрации ферритина в сыворотке крови первоначально осуществлялось радиоиммунологическими методами, основанными на конкуренции за связывание с антителами антигена из сыворотки крови и его радиоактивно меченого аналога [25]. Несколько позднее стал применяться неконкурентный иммунорадиометрический метод, использующий возможность одновременного связывания с молекулой ферритина двух молекул антител [26].

    Особенностью ферритина является наличие нескольких сайтов связывания антител, некоторые из них повторяются. Как было сказано выше, в целом глобула обладает размерами, достаточными для одновременного связывания с четырьмя молекулами антител. Поэтому для выявления ферритина в основном используют неконкурентный метод анализа. Данный выбор связан не только со сложностью конъюгирования ферритина с меткой и возможностью нарушения при этом его антигенной структуры, но и с необходимостью обеспечения высокой чувствительности анализа для выявления ЖДА, недостижимой при конкурентной схеме.

    Применение моноклональных антител с различной эпитопной направленностью для связывания и детекции антигена делает возможным проведение иммунологической реакции в одну стадию, при этом отсутствует конкуренция между «верхними» и «нижними» антителами за связывание с общими эпитопами, искажающая результаты анализа. Проведение анализа в одну стадию позволяет снизить расход реагентов и стоимость анализа, уменьшить занятость лабораторного оборудования и значительно сэкономить рабочее время.

    В настоящее время практически все предлагаемые тест-системы основаны на неконкурентном методе определения ферритина. Однако используемые разными производителями антитела, поверхность твердой фазы, способы детекции сигнала и другие параметры разнятся очень значительно.

    Результаты сравнения аналитических характеристик тест-систем производства различных фирм приведены в Таблице 3.

    Таблица 3. Аналитические характеристики наборов для определения ферритина различных производителей.

    Производитель Особенности методики Используемые антитела Первая и последняя КП, нг/мл; аттестация Чувст­витель­ ность, нг/мл Эффект высоких концент­ раций, нг/мл
    DPC «Immulite» Одностадийный «сэндвич», инкубация 30мин, объем сыворотки 10 мкл, регистрация хемилюминесценции. Иммобилизованные — мышиные моноклональные, конъюгат — козьи поликлональные со щелочной фосфатазой. 10; 1500
    IS 80/578
    1.5 73 000
    Roche «Cobas Core» Одностадийный «сэндвич». В качестве «твердой фазы» используются полистирольные шары. Инкубация 15мин/37°С, объем сыворотки 20 мкл. Субстрат — ТМБ. Мышиные моноклональные к 2-м эпитопам для иммобилизации и конъюгирования с ПХ. 75; 1200
    IS 80/602
    2 300 000
    Delfia Двухстадийный «сэндвич», обе инкубации по 1 часу при комнатной Т, объем сыворотки 20 мкл. Регистрация флуоресценции (Eu метка). Мышиные моноклональные. 2; 1000
    IS 80/578
    0.5 120 000
    IBL Одностадийный «сэндвич», инкубация 45 мин при комнатной Т, объем сыворотки 20 мкл. Иммобилизованные — кроличьи, для конъюгирования с ПХ — моноклональные мышиные. 15; 1000
    IS 80/602
    5 12 000
    Randox Турбидиметрический метод измерения Антисыворотка на латексных частицах. 5; 450 5 2 000
    DSL Двухстадийный «сэндвич», инкубации 30 и 60 мин при комнатной температуре, объем сыворотки 50 мкл. Поликлональные козьи против селезеночного ферритина человека, метка — I125 8; 1000
    IS 80/602
    3.6 10 000
    Beckman Coulter Одностадийный «сэндвич», инкубация 20 мин при 36,5°С, объем сыворотки 10 мкл. Парамагнитные частицы, покрытые козьими АТ против иммуноглобулинов мыши, связывающие мышиные моноклональные АТ к ферритину; конъюгат — козьи АТ со щелочной фосфатазой 10; 1500 0.2
    Roche «Elecsys» Одностадийный «сэндвич». Общее время проведения анализа — 18 мин. Объем сыворотки 15 мкл. Регистрация электрохемилюминесценции. Мышиные моноклональные к 2-м эпитопам для иммобилизации и конъюгирования с ПХ 0,5; 2000 0.5 200 000
    Алкор Био Одностадийный «сэндвич», инкубация 30мин/37°С или 45 мин при комнатной Т, объем сыворотки 20 мкл. Мышиные моноклональные к 2-м эпитопам для иммобилизации и конъюгирования с ПХ 10; 1000
    IS 80/578
    5 10 000

    В Таблице. 4 приведена ориентировочная стоимость реагентов, необходимых для выполнения одного анализа наборами реагентов разных производителей. Стоимость рассчитана по ценам производителя или его официального дистрибьютора в России (при условии проведения анализа в соответствии с инструкцией производителя).

    Таблица 4. Стоимость определения ферритина наборами различных производителей.

    Производитель Цена, $
    VedaLab 4.17
    IBL 3.66
    OrgenTec 3.63
    Sigma 3.05
    DRG 2.66
    Roche «Elecsys» 2.16
    Roche «Cobas Core» 2.04
    Алкор Био 1.52
    DPC «Immulite» 1.22

    Разработанный компанией «Алкор Био» набор «ИФА-ферритин» представляет собой гетерогенную иммуноферментную систему для количественного определения ферритина в сыворотке крови человека. Основными компонентами такой системы является твердая фаза, конъюгат антитела с меткой и калибровочные пробы.

    Из Таблиц 3 и 4 видно, что «ИФА-ферритин» по своим характеристикам превосходит многие из зарубежных аналогов. Стоимость единичного определения ферритина набором DPC «Immulite» немного ниже, однако следует учитывать, что стоимость необходимого для этого автоматического анализатора примерно в 5 раз выше, чем стоимость оборудования, на котором проводится определение ферритина набором «ИФА-ферритин».

    [1] . Bezwoda WR et al. The relationship between marrow iron stores, plasma ferritin concentrations and iron absorption, Scand J Haematol. 1979; 22: 113-20. [2] . Complementary Feeding And The Control Of Iron Deficiency Anemia In The Newly Independent States Presentation By WHO At A WHO/Unicef Consultation Geneva, Switzerland 4 February ( http://www.cdc.gov/mmwr/distrnds.html ). [3] . 1999 Report of the UNICEF/WHO Regional Consultation Prevention and Control of Iron Deficiency Anemia in Women and Children. 3-5 February 1999, Geneva, Switzerland ( http://www.who.int/nut/ida.htm ). [4] . Grail A, Hancock BW, Harrison P. Serum ferritin in normal individuals and in patients with malignant lymphoma and chronic renal failure measured with seven different commercial immunoassay techniques. J Clin Pathol 1982; 35: 1204-1212. [5] . Milman N, Pedersen L. The serum ferritin concentration is a significant prognostic indicator of survival in primary lung cancer. Oncology reports, 2002; 9: 193-198. [6] .Назаренко ГИ, Кишкун АА. Клиническая оценка результатов лабораторных исследований. М., Медицина, 2000, 544с. [7] . Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta. 1996; 1275: 161-203. [8] . Munro HN, Linder MC. Ferritin structure, biosynthesis, and function. Physiological Reviews. 1978; 58: 317-396. [9] . Gerl M, Jaenicke R. Self-assembly of apoferritin from horse spleen after reversible chemical modification with 2,3-dimethylmaleic anhydride. Biochemistry. 1988; 27: 4089-4097. [10] . Harrison PM, Treffry A, Lilley TH. Ferritin as an iron-storage protein: mechanisms of iron uptake. J. Inorg. Biochemistry. 1986; 27: 287 — 293. [11] . Arosio P, Adelman TG, Drysdale JW. On ferritin heterogeneity. Further evidence for heteropolymers. J. Biol. Chemistry. 1978; 253: 4451-4458. [12] . Ruggieri G, Iacobello C, Albertini A, Brocchi E, Levi S, Gabri E, Arosio P. in Ferritins and Isoferritins as Biochemical Markers (Albertini A, Arosio P, Drysdale JW, eds). 1984; pp. 67-78, Elsevier, Amsterdam. [13] . Stefanini S, Chiancone E, Arosio P, Antonini E. Structural heterogeneity and subunit composition of horse ferritin. Biochemistry. 1982; 21: 2293-2299. [14] . Shinjyo S, Abe H, and Masuda M. Carbohydrate composition of horse spleen ferritin. Biochim Biophys Acta, Nov 1975; 411: 165-167. [15] . Reissman KR, Dietrich MR. On the presence of ferritin in the peripheral blood of patients with hepatocellular disease. J. of clinical investigation. 1956; 35: 588-595. [16] . Addison GM, Beamish MR, Hales CN, Llewellyn P. An immunoradiometric assay for ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. J. of Clin. Pathol. 1972; 25: 326-329. [17] . White K, Munro HN. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J. Biol.Chem. 1988; 263: 8938-8942. [18] . Cragg SJ, Covell AM, Burch A, Worwood M. Turnover of 131 I-human spleen ferritin in plasma. British J. of Haematology. 1983; 55: 83-92. [19] . Yamashita N, Oba K, Nakano H, and Metori S. Age-related changes in concentrations of ferritin, glycosylated ferritin, and non-glycosylated ferritin. Nippon Ronen Igakkai Zasshi. 1996; 33: 754-760. [20] . Lipschitz DA, Cook JD, Finch CA, A clinical evaluation of serum ferritin as an index of iron stores. The New Engl J of Medicine, 1974, 290, 22, 1213-1216. [21] . Jacobs A, Miller F, Worwood M, et al. Ferritin in serum of normal subjects and patients with iron deficiency and iron overload. Br Med J. 1972; 4: 206-208. [22] . Cavanna F, Ruggeri G, Iacobell C, Albertini A, Arosio P. Development of a monoclonal antibody against human heart ferritin and its application in an immunoradiometric assay. Clinica Chimica Acta. 1983; 134: 347-356. [23] . Лунев ВЕ, Мельникова ЯИ, Кошкин СА, Лунева НМ. Моноклональные антитела к ферритину селезенки человека. Получение и исследование взаимодействия с ферритином и апоферритином. Биохимия, 1993, том 58, вып. 5, 745-757. [24] . Мельникова ЯИ, Лунев ВЕ, Прейгерзон ВА, Родионов МА. Моноклональные антитела к ферритину селезенки человека. Локализация эпитопов и количественные параметры связывания. Биохимия, 1993, том 58, вып. 5, 759-771. [25] .Luxton AW, Walker WH, Gauldie J, Ali AM, and Pelletier C. A radioimmunoassay for serum ferritin. Clin. Chem., 1977; 23: 683-689. [26] . Miles LE, Lipschitz DA, Bieber CP and Cook JD. Measurement of serum ferritin by a 2-site immunoradiometric assay. Analyt Biochem 1974, 61: 209-224.

    источник